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ABSTRACT
Tuberculosis (TB) presents a significant public health challenge, particularly in high
disease burden countries in Africa, such as Malawi. The extent of this problem varies
across different settings. Understanding the spatial variation and underlying causes of
TB prevalence is crucial for comprehending and addressing the epidemic. Therefore,
the utilization of geospatial analytical methods and spatial temporal models is vital in
analysing and detecting spatial and spatial-temporal clustering of infectious diseases.
This study investigated the spatial distribution and presence of spatial-temporal
clusters of TB in various geographic settings over an eight-year period (2013 — 2020)
in Northern Malawi. Specifically, the study aimed to identify temporal trends, spatial
patterns, infectious disease clusters or hotspots and cluster coverage related to TB.
Spatial and spatial temporal statistical analyses were employed, utilizing Kulldorff's
scan statistics tool, through the implementation of Spatial and Spatial-temporal
models. The findings revealed the presence of seven clusters or hotspots within the
study area. The model identified a cluster pattern where hotspots were observed in
areas characterized by relatively higher population sizes and densities, predominantly
located within economically developed zones. Notably, the clusters or hotspots in
Northern Malawi were found to form around Central Districts, District Hospitals,
major rural hospitals, as well as urban and semi-urban centres, including Mzuzu City,
Chintheche, Bolero, Bwengu, Mzimba Boma, Embangweni, Jenda, Chitimba, among
others. By analysing time trends, the study observed a general decline in TB infection
cases within the region, with an annual decrease of 1.08%. These results indicate
significant progress in disease control efforts. However, TB still poses a considerable

risk to the population residing in proximity to clustered health centres.

Vi
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CHAPTER 1

INTRODUCTION

1.1  Background

Tuberculosis (TB) presents a significant challenge to public health, particularly in
high disease burden countries, which are primarily concentrated in Asia and Africa
(Centers for Disease Control and Prevention, 2020). The geographic distribution of
TB varies globally and within countries, influenced by factors such as socio-economic
conditions, overcrowding, poverty, limited access to health services, socio-cultural
barriers, and HIV infection (Chen, 2019; Nagamine et al., 2008). Socioeconomic
status also plays a crucial role, with an association between high TB incidences and
low socioeconomic status observed in most developing countries (Rubel & Garro,
1992; Souza et al., 2007).

World Health Organization (WHQO) estimates indicate that approximately 9.4 million
people develop active TB annually, with over 2.8 million cases occurring in Africa, a
trend exacerbated by the HIV epidemic (WHO, 2020). TB remains a global public
health concern, with variations in incidence not only among countries but also within
different regions of a country (WHO, 2020). These differences are influenced by
various epidemiological and social factors, including lifestyle, smoking, occupation,
and exposure to risk factors (WHO, 2020).

In Malawi, a landlocked country in southeastern Africa, TB control faces challenges
due to limited healthcare infrastructure, socioeconomic disparities, and high rates of
HIV co-infection (Tadesse & Demissie, 2019). Despite improvements in case
detection and treatment outcomes, the spatial distribution, and temporal dynamics of
TB transmission in Malawi, particularly in the northern region, remain poorly

understood.



Spatial distribution analysis has been instrumental in highlighting regional variations
in disease prevalence (Garrido et al., 2015). Spatial-temporal analysis, a powerful
epidemiological tool, provides insights into the geographical distribution and temporal
trends of infectious diseases like TB. By analysing TB cases across space and time,
researchers can identify spatial clusters, temporal patterns, and high-risk populations,
informing targeted interventions and resource allocation strategies. (Tadesse &
Demissie, 2019)

The northern region of Malawi, encompassing districts such as Karonga, Rumphi, and
Mzimba, presents a unique setting for TB epidemiology research. Despite being
relatively understudied compared to other regions, the northern region grapples with a
significant TB burden, exacerbated by poverty, limited healthcare access, and

population mobility (Mhimbira et al., 2017).

1.1.1 Spatial clustering of TB data

The identification of geographical areas with ongoing disease transmission, using
geographic information systems and spatial-temporal statistical analyses, has become
indispensable. Spatial-temporal clustering methods aid in the identification of a
greater density of occurrences of a phenomenon in certain places at certain times
(\Vargas, 2004). These techniques have been intensively applied in several areas, such
as demography, criminology, and toxicology. For epidemiologists, disease clustering
is a technique of major interest that has been studied for many decades. For effective
disease management, it is essential to know when, where, and to what degree a
disease is present. In the last decade, there has been a rapid development of spatial-
temporal clustering techniques applied to health, in the assessment of infectious
diseases, cancer, rheumatism, diabetes, and accidents and to detect the infectious
disease hotspots of a variety of infectious diseases in many countries across the
continent (Vargas, 2004).

Studies such as Miandad et al. (2014) conducted in Karachi, Pakistan and Bastida et
al. (2012) reported spatial and spatial-temporal clustering of TB, thereby generating
valuable information about the distribution of the disease. However, these studies
were conducted in urban settings over a brief period, which makes them deficient in

detecting the pattern of the disease distribution in rural areas. (Vargas, 2004)
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1.1.2 Case Studies and spatial-temporal Analysis of TB in Malawi

Nyirenda et al. (2005) explored the use of geographical information systems in TB
control efforts in Malawi. The study assessed the effectiveness of GIS in enhancing
TB control strategies and understanding disease dynamics. GIS technology was used
to analyse spatial patterns of TB incidence and distribution within Malawi. The study
integrated spatial data on TB cases with geographical information, facilitating the
visualization of TB hotspots, disease clusters, and areas with high disease burden.
However, one potential limitation was the temporal aspect, as the study was
conducted in 2005, and TB control strategies and technologies may have evolved
since then. The findings may not fully reflect the current landscape of TB control
efforts in Malawi, and newer developments in GIS technology may have enhanced its
utility in TB surveillance and control.

Kirolos et al. (2021) conducted a study on tuberculosis (TB) case notifications in
Malawi, focusing on seasonal and weather-related trends. The research aimed to
identify patterns and correlations between TB incidence and seasonal variations, as
well as weather conditions. Statistical models were used to analyse TB case
notifications, including time series analysis and regression models. The focus on
seasonal and weather-related factors, providing insights into environmental influences

on TB transmission highlighted the strengths of this study.

Khundi et al. (2021) conducted a multilevel epidemiological analysis in urban
Blantyre, Malawi, focusing on clinical, health systems, and neighbourhood
determinants of TB case fatality. The study used surveillance data to provide insights
into factors influencing TB mortality rates. A notable strength of the study was in its
comprehensive approach, which examined multiple determinants of TB case fatality
at various levels. The study offered a holistic understanding of TB mortality dynamics
in urban Blantyre by considering clinical, health systems, and neighbourhood factors.
Additionally, the utilization of enhanced surveillance data enhanced the reliability and

accuracy of the findings, contributing to a more robust analysis.

However, despite these strengths, the study may have limitations. One potential
limitation is the focus on only one urban district, Blantyre, which may not fully
capture the dynamics of TB case fatality in rural areas or other regions of Malawi.
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This geographical limitation may impact the generalizability of the findings to other
settings within the country. Additionally, while the study provides valuable insights
into clinical and health system determinants of TB mortality, other factors such as
socio-economic determinants or access to healthcare services may not have been fully
explored. Therefore, future research could benefit from a more comprehensive
examination of TB case fatality determinants, encompassing a broader range of

factors and geographical contexts.

Nightingale et al. (2021) analysed community-level variation in TB testing history
based on a prevalence survey in Blantyre, Malawi. The study assessed disparities in
TB testing practices across different communities within Blantyre. The study’s focus
on community-level variation, which provided insights into disparities in healthcare
access and utilization at the local level proved to be its notable strength. The study
enhanced the understanding of factors influencing TB diagnosis and healthcare-
seeking behaviour by examining TB testing history across multiple communities.
Conversely, the study's focus on a specific geographic area (Blantyre, Malawi) limits

the generalizability of the findings to other regions or countries.

While these spatial and temporal analysis methods have been widely applied in TB
research, there is limited literature specifically addressing their application in the
context of the northern region of Malawi. This gap in knowledge highlights the need
for studies that apply these advanced statistical methodologies to analyse TB data in

this region and elucidate the spatial-temporal dynamics of TB case notification.

1.1.3 Global Case Studies: Spatial-temporal Analysis of Th
Bastida et al. (2012) conducted a research study with the primary objective of
utilizing spatial statistics program SCAN and GIS to identify the spatial and temporal
distribution of TB from 2006 to 2010 in the State of Mexico. The study utilized
population data on TB cases reported from 499 localities during the specified period.
Spatial and space-time analysis techniques were used to analyse the data. The findings
revealed nine significant clusters (P < 0.05) of TB incidence, indicating that TB in the
State of Mexico was not randomly distributed but rather concentrated in specific areas

close to Mexico.



The study demonstrates several strengths that contribute to our understanding of TB
epidemiology in the State of Mexico. Firstly, the utilization of advanced spatial
statistics program SCAN and GIS techniques allowed for the identification of
significant TB clusters and hotspots, providing valuable insights into the spatial
distribution of TB cases. Additionally, the comprehensive geographic coverage of the
study, encompassing data from 499 localities, facilitated a thorough assessment of TB

distribution patterns, ensuring a representative sample for analysis.

However, despite these strengths, a notable drawback is the limited temporal scope of
the study, which focused solely on TB incidence from 2006 to 2010. This narrow
timeframe restricts the assessment of long-term TB epidemiology trends and limit the
findings' predictions to other periods. This limitation has contributed to the rationale
for this study, which focuses on examining spatial-temporal trends in TB case

notification over an eight-year period.

Miandad et al. (2014) conducted a study in Karachi, Pakistan, with the primary
objective of using exploratory disease mapping to determine salient spatial patterns of
TB and demarcate concentration zones of TB patients in the study area. The research
context was significant with reference to WHO and the International Union against
TB and lung diseases characterizing Pakistan's TB situation as one of the worst in the
world. The Government of Pakistan, in collaboration with WHO, launched a TB
control program nationwide, including in Karachi, providing TB diagnosis equipment
and financial support to health centers and NGOs for free TB testing of suspected

patients.

The study utilized spatial analysis techniques, including GIS applications, to analyse
TB patient data recorded at TB diagnosis centers in Karachi from 2010 to 2013. The
findings revealed a gradual increase in the number of TB patients during the study
period, with a notable decrease in 2012. Furthermore, the spatial analysis indicated
that most TB patients belonged to low-income groups and resided in kacchi abadies,

underscoring the socio-economic disparities in TB incidence.

One notable strength of the study by Miandad et al. (2014) was in its utilization of
GIS technology for spatial analysis. The study was able to identify spatial patterns and
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concentration zones of TB patients, providing valuable insights for targeted
intervention strategies by leveraging GIS applications. Like the study conducted by
Bastida et al. (2012), one notable drawback was the relatively restricted temporal
scope of the research, which exclusively examined TB patient data in a narrow
timeframe from 2010 to 2013. Additionally, while the findings provide insights into
TB patterns in Karachi, they may not be readily applicable to other regions or
countries with different socio-economic and healthcare contexts. Hence, there is a
need for the adoption of holistic approaches when conducting similar studies,

encompassing the entire region.

Dangisso et al. (2015) conducted a retrospective space-time and spatial analysis to
explore the spatial and spatial-temporal patterns of smear-positive pulmonary
tuberculosis (PTB) in Ethiopia, a country burdened with high TB rates and regional
variations in case notification rates. The study, conducted at the kebele level (the
lowest administrative unit within a district), aimed to identify clusters of PTB cases
and understand their distribution across different settings.

The study’s comprehensive approach, utilizing a range of statistical methods
including scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics for
spatial analysis is recommended. The study analysed data from 22,545 smear-positive
PTB cases notified over a period of 10 years, providing a robust dataset for spatial-
temporal analysis. The findings revealed significant spatial and spatial-temporal
clusters of PTB cases across multiple districts, shedding light on the geographic
distribution of the disease and its temporal dynamics. Conversely, one potential
limitation is the reliance on basic management unit (BMU) reports for TB case
notification data. BMU reports may not accurately reflect the true burden of TB in
specific administrative catchment areas, as they may include cases from neighboring
catchments or miss cases from their own catchment enrolled in other health facilities.
This could lead to over- or underreporting of TB cases, potentially impacting the

accuracy of the spatial-temporal analysis.

Li Huang et al. (2017) conducted a spatial-temporal cluster analysis of pulmonary
tuberculosis (PTB) in Zhaotong, China, using town-level PTB registration data from

2011 to 2015. Robust statistical methods, including time series analysis, descriptive

6



analysis, and spatial and space-time scan statistics were administered to
comprehensively explore PTB epidemiology. The analysis encompassed various
epidemiological parameters, such as age, gender, treatment history, and geographic
location, providing a detailed understanding of PTB incidence patterns. Spatial
visualization techniques aided in identifying high-risk areas, while temporal analysis
revealed seasonal variations in PTB incidence. However, the study's limitations,
including its focus on a specific geographic area and time, potential data quality
issues, and the absence of exploration of confounding factors, should be

acknowledged.

Aceng et al. (2024) conducted a retrospective analysis spanning ten years to examine
the spatial distribution and temporal trends of TB case notifications in Uganda. The
study aimed to provide insights into the geographic spread of TB cases over time and
identify any temporal trends in TB incidence. The study’s long-term perspective,
covering a decade of TB case notifications is recommendable. This extended
timeframe allowed for the identification of trends and patterns in TB incidence over
time. Furthermore, the spatial analysis conducted in the study provided valuable
insights into the geographic distribution of TB cases across different regions of
Uganda. By mapping TB case notifications, the study highlighted areas with higher
TB burden, which can inform targeted interventions and resource allocation for TB
control strategies. The integration of spatial and temporal analyses enhances the
study's utility in identifying areas of persistent TB transmission and monitoring

changes in TB incidence over time.

1.2 Problem statement

Understanding the spatial variation and underlying causes of TB prevalence is critical
for effective epidemic management. Geospatial analytical methods, combined with
advanced statistical models, are instrumental in detecting spatial and spatial-temporal
clustering of infectious diseases. While previous studies have employed these
methods, significant gaps remain in the biostatistical approaches used, particularly in

the context of TB research in Northern Malawi.

Existing research has often focused on urban settings or has been limited in scope by
short time frames and restricted geographical areas. For example, studies by Miandad

7



et al. (2014) in Karachi, Pakistan, and Bastida et al. (2012) in the State of Mexico
have successfully identified spatial-temporal clusters of TB. However, these studies
were conducted in urban settings over a brief period, which makes them deficient in
detecting the broader, long-term spatial-temporal patterns necessary for rural areas
with different socio-economic contexts. These studies primarily utilized descriptive
spatial analysis techniques, which, while useful, do not fully leverage the potential of
more advanced biostatistical models to uncover deeper insights into disease dynamics.
In Malawi, studies such as those by Nyirenda et al. (2005) and Kirolos et al. (2021)
have applied Geographic Information Systems and time-series analysis to TB data.
However, these studies often lack the integration of robust spatial-temporal statistical
models that can provide a more subtle understanding of the patterns and trends in TB
incidence. For instance, Nyirenda et al. (2005) focused on the application of GIS for
spatial patterns but did not employ advanced spatial-temporal clustering methods,

thus missing the opportunity to identify dynamic changes over time.

Furthermore, Khundi et al. (2021) and Nightingale et al. (2021) provided valuable
insights into TB determinants and testing practices in specific areas of Malawi. Yet,
these studies were limited to urban settings or focused narrowly on community-level
variations without applying comprehensive spatial-temporal statistical techniques that
could capture broader regional patterns and trends. Their methodologies often relied
on simple statistical analyses that did not account for the complexities of spatial-

temporal interactions.

Geospatial analytical methods, combined with scan statistics, are instrumental in
detecting spatial and spatial-temporal clustering of infectious diseases. However,
existing TB program reports in many regions, including Northern Malawi, are often
compiled, and reported quarterly at higher administrative units, lacking essential
information such as population size, geographic coordinates, and temporal trends.
This limitation impedes the accurate identification of hotspots and clusters using
modern spatial-temporal techniques and approaches. The aggregation of TB case
notifications at high administrative levels (e.g., district or region) obscures finer-scale
spatial patterns that may be critical for identifying localized hotspots. High-resolution
spatial data, including geographic coordinates of TB cases, are essential for precise
spatial analysis. Without this, spatial clustering, and hotspot detection methods, such

8



as spatial scan statistics, cannot be effectively applied. Studies like those by Miandad
et al. (2014) in Karachi and Bastida et al. (2012) in Mexico utilized detailed spatial
data to identify TB clusters, but similar high-resolution data are often lacking in
Northern Malawi.

The gap in the current literature is evident in the lack of application of advanced
biostatistical methods, such as Space-Time Scan Statistics, which can provide a more
rigorous analysis of spatial and temporal clustering of TB. This method allows for the
detection and characterization of clusters not only in space but also in time, providing
a dynamic view of disease spread and identifying high-risk periods and locations. By
leveraging Space-Time Scan Statistics, this study aims to fill the gap in existing
research by providing a detailed analysis of the spatial and temporal dynamics of TB
in Northern Malawi. This approach will enable the identification of significant
clusters and high-risk areas over an extended period, offering insights that are crucial

for targeted intervention strategies and resource allocation.

In conclusion, the primary gap in the current literature lies in the insufficient
application of advanced biostatistical methods to understand the spatial-temporal
distribution of TB in Northern Malawi. By addressing this gap, this study not only
enhances the understanding of TB epidemiology but also has significant implications
for public health policy and the formulation of targeted and effective TB control

strategies in the region.

1.3 Objectives

1.3.1 Main Objective
To utilize advanced biostatistical methods to investigate the spatial distribution of TB
focusing on the presence of spatial-temporal clusters over an 8-year period in
Northern Malawi.

1.3.2 Specific Objectives
e To utilize spatial and spatial-temporal models to identify significant spatial
and spatial-temporal clusters of TB within the northern region of Malawi.



o Apply spatial-temporal statistical models to detect and characterize infectious
disease cluster coverage and radius.
e Employ Spatial and Spatial — temporal Statistical methods to discern temporal

trends and spatial patterns of TB across the northern region of Malawi.

1.4 Significance of the study

Limited research has been conducted on the spatial-temporal analysis of TB in
Malawi hence lack of substantial evidence regarding the distribution patterns of TB in
different settings. Understanding the spatial patterns and spatial-temporal variations of
the disease, particularly in diverse geographic settings encompassing both urban and
rural areas, holds significant potential for informing policy and decision-making
processes in resource-constrained settings. This study aims to contribute to a
comprehensive understanding of the distribution of TB cases across health facilities,
while also examining cluster patterns to discern how TB cases are spatially and
temporally dispersed. Such insights will assist public health authorities in predicting
the potential risks posed to the general population in the event of a pandemic.
Additionally, the study will provide valuable input into the general research database
of the Malawi Spatial Data Platform, thereby facilitating future geographic
information system studies and TB modelling. Consequently, this study serves as a
foundational step towards investigating the spatial and temporal distribution patterns

of TB cases in Northern Malawi

1.5  Thesis Structure

This thesis report is organized as follows: Chapter two contains a literature review
that outlines a review of studies on spatial-temporal analysis of TB conducted across
the countries. Chapter three outlines the methodological approach of the study, it
describes the specific details of data, its sources, and the methods to be used for data
analysis. It also describes spatial and temporal models used in the identification of
clusters, hotspots, and time trends. Chapter four presents’ results from the application
of methods outlined in chapter three. Results are presented in tabular and figures to
summarize findings. Chapter five discusses the results and Chapter 6 outlines main
conclusions and recommendations from the study. A list of references used follows

from chapter six. Appendices outline raw data and Sat scan analytical results.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the commonly applied Spatial- temporal models and their
application in detecting spatial and spatial-temporal clustering of infectious diseases.
It aims to delineate the gaps in knowledge that the current study aims to fill, discuss
the assumptions and variations of each model, and provide detailed methods of

estimation, including maximum likelihood and expectation-maximization algorithms.

2.2 Space-Time Scan Statistics model

Space-Time Scan Statistics uses likelihood ratio tests to identify clusters of events in
space and time, facilitating the detection of disease hotspots (Kulldorff, 1997). The
model assumes a Poisson distribution for disease events and tests the null hypothesis
of spatial and temporal randomness. Variations may include different scan window
shapes and sizes, allowing for flexibility in cluster detection. The interpretation of
these statistics involves assessing the significance of identified clusters and
understanding their implications for disease transmission dynamics. This is

represented as follows:

1 E, (0, —E,)
D= p Y 5
| | ZPEP Ep

Where D is the test statistic representing the likelihood ratio, P is the set of all
possible space-time cylinders, O, is the observed number of cases within the space-
time cylinder p and E, is the expected number of cases within the space-time cylinder
p, calculated based on the null hypothesis of spatial and temporal randomness
(Kulldorff, 1997).
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2.2.1 Method of estimation

The likelihood ratio test compares the observed and expected number of cases within
each space-time cylinder. A high value of D indicates a higher-than-expected number
of cases within a particular space-time cylinder, suggesting the presence of a disease
cluster. Interpreting the results involves assessing the statistical significance of
identified clusters. Significant clusters indicate areas where the observed number of
cases deviates significantly from the expected number, suggesting spatial-temporal
aggregation of disease (Kulldorff, 1997).

Maximum likelihood estimation for the Space-Time Scan Statistics model involves
maximizing the likelihood ratio over all possible space-time cylinders. The likelihood

ratio for a given cylinder p is calculated as follows:

L(0, E,) = Op \* (V=0 )7
PPl \E, N —E,

Where N is the total number of cases in the study region and period and

0, and E,, are as defined above.

The likelihood function is evaluated for each potential cluster, and the maximum
likelihood ratio is identified. This maximum value represents the most likely cluster
of disease events, and its statistical significance is assessed using Monte Carlo
simulations to generate a distribution of likelihood ratios under the null hypothesis
(Kulldorff, 1997).

In cases where the model includes latent variables representing unobserved
heterogeneity or missing data, the Expectation-Maximization (EM) algorithm can be
applied. The EM algorithm is an iterative method for finding maximum likelihood
estimates of parameters in models with latent variables. It involves two main steps:
the Expectation (E) step and the Maximization (M) step. In the E-step, the expected
value of the log-likelihood function is calculated with respect to the current estimates

of the latent variables. This is represented as
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Q(8]6™) = E,y o [log L (6; X, 2)]

Where 6%) represents the current estimates of the parameters, X denotes the observed
data, and Z represents the latent variables and log L (6; X, Z) is the complete-data log-

likelihood function.

In the M-step, the expected log-likelihood function obtained in the E-step is
maximized to update the parameter estimates, represented as

0*+D = argmaxe Q(6]6W)

These steps are iterated until convergence, meaning the change in the parameter
estimates between iterations falls below a predefined threshold. Once the parameters
are estimated using either MLE or the EM algorithm, interpreting the results involves
assessing the statistical significance of the identified clusters. Significant clusters are
those where the observed number of cases deviates significantly from the expected
number, suggesting areas of spatial-temporal aggregation of disease (Dempster, Laird,
& Rubin, 1977).

2.3 Spatiotemporal point process models

Spatiotemporal point process models aim to characterize the intensity functions of
disease occurrence across both space and time. These models, as described by Diggle
(2013), provide a detailed framework for understanding disease dynamics by
capturing baseline intensity, spatial and temporal trend components, and residual
variation. The general form of a spatiotemporal point process model is given by the

equation:

A(s, t) = u(s, t) + a(s) + B(t) +y(s,t)

In this equation 4 (s, t) represents the intensity function of the point process at location
s and time t, 4, (S, t) denotes the baseline intensity, capturing the underlying average
rate of disease events, «(s) and f(t) represent spatial and temporal trend components,

respectively, accounting for systematic variations in disease occurrence across space
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and time and y (s, t) captures the residual spatiotemporal variation not explained by

the baseline intensity or trend components.

The key assumptions of spatiotemporal point process models include the assumption
of stationarity, similarly to STARIMA models, and the assumption of independence
between spatial and temporal components. Variations of these models include
different specifications for trend components and methods for incorporating spatial
and temporal dependence. This includes Poisson Point Process which assumes that
events occur independently and uniformly over space and time and the cox Process

which incorporates a stochastic process to model varying intensity.

2.3.1 Method of estimation
Parameter estimation for spatiotemporal point process models typically involves
maximum likelihood or Bayesian methods. These methods optimize the likelihood
function given the observed data, accounting for both spatial and temporal
dependencies. Interpretation of the model parameters involves understanding how

each component contributes to the overall intensity of disease events. Diggle (2013).

For MLE, the log-likelihood function is maximized:

n

logL (6;Y) = z log A (si,t;; ©) — [, A(s, t; O)dsdt
i=1

L

Where © represents the vector of model parameters, S and T are the spatial and

temporal domains.

The Expectation-Maximization algorithm for the Space-Time Scan Statistics model
can be adapted for use with the spatiotemporal point process model, particularly in
cases where there is incomplete data or latent variables that need to be estimated.
Once the parameters are estimated using either MLE or the EM algorithm, the
interpretation involves understanding how each component contributes to the overall
intensity of disease events. The baseline intensity u(s,t) reflects the underlying
average rate of disease occurrence, providing a baseline measure against which other

components are compared. The spatial trend a(s) indicates systematic spatial
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variations in disease risk, helping identify areas with higher or lower disease rates.
The temporal trend B (t) captures systematic temporal variations, revealing periods
with increased or decreased disease activity. The residual variation y (s, t) accounts
for remaining spatiotemporal variation, identifying deviations from the baseline and

trend components (Diggle, 2013).

2.4 Space-Time Autoregressive Integrated Moving Average (STARIMA) model
In the context of spatial-temporal modelling, various methodologies are to analyse the
intricate dynamics of disease spread and distribution. One such approach is the Space-
Time Autoregressive Integrated Moving Average (STARIMA) model, which
incorporates both spatial and temporal dependencies into the analysis through
autoregressive and moving average components.

Yt,s =a+ ﬁYt—l,s + yyt,s—l, + 6Yt—1,s+ et,s

Where Y, ¢ denotes the response variable at time t and space s, while a, S, y, 6

represent model coefficients, and €, is the error term (Cressie and Wikle, 2015).

The STARIMA model assumes stationarity in both spatial and temporal dimensions,
implying that the statistical properties of the data remain constant over time and
space. Variations of the STARIMA model include variations in the order of
autoregressive and moving average components, allowing for flexibility in capturing

different patterns of disease transmission.

2.4.1 Method of estimation
Estimation of the STARIMA model parameters typically involves maximum
likelihood estimation, where the parameters are optimized to maximize the likelihood
function given the observed data. The estimation process includes fitting the model to
the data using iterative algorithms, such as the Kalman filter, and interpreting the
estimated coefficients to understand their impact on disease dynamics (Cressie and
Wikle, 2015).

The likelihood function for the STARIMA model can be expressed as:
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L(&;Y) = HtT=1 Hs,s=1 f(Y:s10)
Where 6 represents the vector of model parameters and f is the probability density

function of Y; ;.

The Expectation-Maximization algorithm for the STARIMA Model can be adapted
for use with the spatiotemporal point process model. Once the parameters are
estimated using either MLE or the EM algorithm, the interpretation involves
understanding how each component contributes to the overall spatial-temporal
dynamics of the response variable. The coefficient a\alphaa represents the intercept
term, while g, y, and o capture the temporal and spatial dependencies. The error term

&5 accounts for random noise in the model.

2.5 Space-Time Generalized Linear Mixed Models (ST-GLMMs)

Space-Time Generalized Linear Mixed Models integrate generalized linear models
with spatial and temporal random effects, offering a comprehensive framework for
analysing spatial-temporal data (Diggle et al., 2013). ST-GLMMs assume a linear
relationship between covariates and the response variable, with spatial and temporal
random effects capturing unobserved heterogeneity and spatial-temporal
autocorrelation. Variations may include different distributions for the random effects
and alternative specifications for the fixed effects. The general form of the ST-

GLMM can be expressed as:

Yije = XB + Zuy; + Wjvy; + €y

Where y;j, represents the observed response variable at location i, time j, and
individual k; X is the design matrix for the fixed effects f; Z; and W; are the design
matrices for the spatial and temporal random effects, respectively; u;; and v;; are the
spatial and temporal random effects, assumed to follow a multivariate normal
distribution with mean zero and covariance matrices X, and X, respectively and e
represents the error term, assumed to be normally distributed with mean zero and

variance ¢* (Diggle et al., 2013).
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2.5.1 Method of estimation
The likelihood function for the ST-GLMM is constructed based on the joint
distribution of the observed data, given the fixed and random effects. The log-
likelihood function for a given set of parameters 8 = (B,%, %,, 02 ) can be expressed

as:
n 1 1
logL(0) = —Elog(2n) —5 log | Z| —3 Y —XB)'T"Y(Y — XpB)

Where n is the total number of observations, Y is the vector of observed responses, X
is the design matrix for fixed effects, X is the combined covariance matrix for the

random effects and the error term and X! denotes the inverse of .

The parameters S, X, %, and o” are estimated from the data using iterative estimation
techniques such as the EM algorithm or MCMC methods. Once estimated, the fixed
effects f are interpreted to understand the relationship between covariates and the
response variable, while the spatial and temporal random effects provide insights into
the spatial and temporal variability of the response variable, respectively (Diggle et
al., 2013).

2.6 Rationale for Using the Space-Time Scan Statistics Model in the Spatial-
Temporal Analysis of TB Case Notification in Northern Malawi

Among the various spatial-temporal models discussed, the Space-Time Scan Statistics
model developed by Kulldorff emerged as the most suitable choice for this study on
the spatial-temporal analysis of TB case notification in Northern Malawi. Several
advantages rendered this model particularly appropriate for achieving the research
objectives. The model effectively identified clusters and examined the spatial-
temporal aspects of TB case notifications, addressing a significant gap in

understanding within Northern Malawi's context.

Firstly, the Space-Time Scan Statistics model is specifically designed to detect
clusters of disease events in both space and time, making it particularly well-suited for
identifying disease hotspots and spatial-temporal patterns of TB transmission

(Kulldorff, 1997). Unlike models that focus solely on spatial or temporal dimensions,
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the Space-Time Scan Statistics model considers both simultaneously. This dual
consideration enhances the sensitivity of cluster detection, allowing for the
identification of significant disease clusters that may be overlooked by other methods.
For example, while the STARIMA model captures spatial and temporal dependencies
through autoregressive and moving average components, it may not effectively isolate

specific clusters or hotspots as the Space-Time Scan Statistics model does.

Moreover, the Space-Time Scan Statistics model offers unparalleled flexibility in
defining the size, shape, and duration of potential clusters. This adaptability allows
researchers to tailor the analysis to the specific characteristics of the data and the
epidemiological context (Kulldorff, 1997). Such flexibility is particularly crucial in
the context of TB transmission, where clusters can vary significantly in terms of their
geographic spread and duration. In contrast, models like the ST-GLMMs, while
robust in incorporating random effects to account for spatial and temporal variability,
do not inherently provide the same level of flexibility in defining and detecting

clusters.

The Space-Time Scan Statistics model provides rigorous statistical measures of
significance for identified clusters. This capability allows researchers to assess the
likelihood that observed clusters are due to random variation rather than actual
patterns of disease transmission (Kulldorff, 1997). The statistical rigor inherent in the
model enhances the reliability of cluster detection results, providing confidence in the
interpretation of identified clusters as true disease hotspots. While Spatiotemporal
point process models can characterize variations in disease occurrence through
intensity functions, they may not offer the same level of statistical testing for cluster

significance, which is critical for public health decision-making.

Furthermore, the implementation of the Space-Time Scan Statistics model through
software tools such as SaTScan facilitates efficient and user-friendly analysis of large
spatial-temporal datasets. This practical advantage streamlines the process of cluster
detection and interpretation, making it accessible for researchers and public health
practitioners (Kulldorff, 1997). In contrast, the STARIMA model and ST-GLMMs
often require more complex statistical software and expertise, which can be a barrier

for routine public health surveillance and intervention planning.
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The application of the Space-Time Scan Statistics model addresses significant gaps in
the current understanding of TB transmission dynamics in Northern Malawi. While
previous studies have utilized various spatial-temporal models to analyse disease
patterns, many have not effectively combined spatial and temporal dimensions in a
way that identifies specific clusters and hotspots. The flexibility and statistical rigor of
the Space-Time Scan Statistics model enable a more nuanced analysis of TB case

notifications, revealing patterns and trends that other models may miss.

When compared to Spatiotemporal point process models, STARIMA, and ST-
GLMMs, the Space-Time Scan Statistics model stands out for several reasons.
Spatiotemporal point process models, for instance, focus on the intensity functions of
point patterns across space and time, which is useful for characterizing disease
occurrence but less effective for explicit cluster detection (Diggle, 2013). The
STARIMA model, while incorporating spatial and temporal dependencies, is
primarily geared towards forecasting rather than identifying specific clusters (Cressie
& Wikle, 2015). ST-GLMMs offer robust modelling of spatial and temporal
variability through random effects but do not inherently focus on cluster detection
(Diggle et al., 2013).

In summary, the Space-Time Scan Statistics model provides a robust, flexible, and
statistically rigorous framework for analysing the spatial-temporal dynamics of TB
case notifications in Northern Malawi. Its ability to detect clusters of disease events in
both space and time, combined with its flexibility in defining clusters and rigorous
statistical testing, made it an ideal choice for this study. The model's implementation
through user-friendly software further enhanced its practical applicability, facilitating

efficient analysis and interpretation.

2.7 Cases where spatial-temporal methods have been applied to data.

Various studies have demonstrated the utility of spatial-temporal methods in different
contexts. Smith et al. (2018) applied spatial cluster detection methods to identify
hotspots of dengue fever transmission in urban areas of Brazil. Their study effectively
showcased the use of spatial methods in pinpointing areas at elevated risk of dengue
outbreaks, thereby informing targeted vector control interventions. By utilizing a
purely spatial cluster detection method, Smith and colleagues were able to identify
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areas with high incidence rates, providing actionable insights for public health
officials. This approach was instrumental in deploying targeted vector control

measures, thus reducing the incidence of dengue in identified hotspots.

Similarly, Chen et al. (2020) utilized time-series analysis to examine temporal trends
in cancer incidence rates in a population-based cancer registry dataset. Their study
revealed significant temporal variations in cancer incidence over time, highlighting
the importance of ongoing surveillance and monitoring efforts. By applying advanced
time-series methods, Chen and colleagues detected subtle trends and patterns in
cancer incidence that traditional methods might have overlooked. Their findings
underscored the necessity for continuous monitoring and early intervention strategies

to manage and mitigate cancer risks effectively.

Furthermore, Zhang et al. (2019) employed Poisson regression models to assess the
association between road traffic accidents and various contributing factors, such as
road characteristics, weather conditions, and driver behaviour. Their study identified
significant predictors of road traffic accidents and provided valuable insights for road
safety planning and interventions. Using a combination of spatial and temporal data,
Zhang and colleagues were able to pinpoint high-risk areas and times for road traffic
accidents. This information proved crucial for informing more effective preventive

measures and improving road safety infrastructure.

In addition, Lee et al. (2017) conducted a spatiotemporal analysis of influenza spread
in South Korea using STARIMA models. They identified significant clusters and
temporal trends of influenza cases, providing insights into the effectiveness of
vaccination campaigns and other control measures. Lee and colleagues' analysis
highlighted the importance of considering both spatial and temporal dimensions in
disease surveillance and control, thereby enhancing the ability to respond to and

manage influenza outbreaks more effectively.

Moreover, Jones et al. (2021) applied ST-GLMMs to examine the spread of COVID-
19 in urban and rural areas of the United States. Their study revealed significant
differences in transmission dynamics between urban and rural settings, emphasizing

the need for tailored public health strategies. By using ST-GLMMs, Jones and
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colleagues gained a nuanced understanding of how various factors influenced
COVID-19 spread over time and across different regions. Their findings informed
public health policies, helping to design more targeted and effective intervention

strategies.

Furthermore, Garcia et al. (2022) used space-time scan statistics to analyse the spread
of the Zika virus in Central America. Their study identified spatiotemporal clusters of
Zika virus transmission, which provided critical information for public health
authorities to implement targeted control measures. Garcia and colleagues’
application of space-time scan statistics allowed for the detection of high-risk areas

and periods, facilitating more efficient allocation of resources to combat the outbreak.

Additionally, Kim et al. (2023) applied Bayesian hierarchical models to study the
spatiotemporal dynamics of air pollution and its health impacts in urban centers across
East Asia. Their research revealed significant spatial and temporal variations in air
pollution levels and associated health outcomes. By utilizing Bayesian hierarchical
models, Kim and colleagues were able to account for complex dependencies and
uncertainties in their data, providing robust estimates of pollution impacts. Their
findings have significant implications for urban planning and public health policies
aimed at reducing air pollution and mitigating its adverse health effects.

Lastly, Ahmed et al. (2023) utilized spatial-temporal kernel density estimation to
analyse the distribution and evolution of cholera outbreaks in Sub-Saharan Africa.
Their study demonstrated the effectiveness of this method in identifying emerging
hotspots and tracking the spread of cholera over time. Ahmed and colleagues’ work
highlighted the importance of continuous spatial-temporal monitoring in managing

infectious disease outbreaks and improving public health responses.

By applying similar spatial-temporal methods to TB data in the northern region of
Malawi, this thesis aimed to advance the understanding of the spatial-temporal
analysis of TB and inform evidence-based TB control strategies in the region. Using
advanced biostatistical models like Space-Time Scan Statistics, this study provides
detailed insights into the spatial and temporal dynamics of TB, enabling more targeted
and effective public health interventions.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter focuses on the methodology adopted to determine the spatial and spatial-
temporal trends of TB case notifications in northern Malawi. It depicts the data
sources and collection procedures, the data analysis package, and the spatial-temporal

models utilized.

3.2. Data Collection and Analysis
3.2.1 Data Sources and Collection Procedures

This study investigated the space-time dynamics of TB clusters in Northern Malawi
from 2013 to 2020, utilizing data collected from secondary sources, primarily the
hospital records database of all health facilities in the region. The study was
conducted across 61 health centres situated in six districts within the northern region.
Mzimba district, being the largest, accounted for 25 health facilities, followed by
Karonga (10), Chitipa (8), Nkhatabay (8), Rumphi (7), and Likoma (1). However,
upon analysis, only 59 health facilities were deemed to have significant TB case

records worthy of study.

The TB data collection process followed a structured approach coordinated by District
TB Officers, involving the maintenance of three types of registers at the district level:
a chronic cough register, a laboratory TB register, and a TB treatment register (World
Health Organization, 2020). These registers captured details of patients undergoing
TB diagnosis and treatment, including sputum smear results and treatment initiation.
The collected data were collated quarterly by District TB Officers, forwarded to
Regional TB Officers, and then compiled into regional summaries transmitted to the
Central Unit of the National TB Program (NTP). For this study, data were obtained
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from the Central Unit level, encompassing all TB data from the sixty-one health

facilities in the northern region (Nyirenda, 2006).

Population data for the study area were derived from the Malawi Population and
Household Census (MPHC) reports of 2008 and 2018. Accounting for the decadal
nature of MPHCs, an annual population growth rate of 2.7% was applied to estimate
the annual population size per district (Souza et al., 2007). Additionally, SaTScan
software was utilized to impute population data at one or more specific 'census times'
and perform linear interpolation based on population sizes at preceding and
succeeding census times. This approach enabled the estimation of population sizes for
specific locations and time periods, crucial for spatial-temporal analysis of TB
clusters (Kulldorff, 1997).

egend
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Figure 1: Map of Malawi
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3.2.2 Poisson Model for Spatial-Temporal Cluster Detection in Kulldorff's
SaTScan software
The SaTScan software package was instrumental in conducting spatial-temporal
cluster analysis of TB case notification. Utilizing the Poisson probability model
within SaTScan, the study identified clusters of elevated TB incidence rates across
different spatial and temporal dimensions of events, within specific spatial and

temporal windows.

The Poisson probability model within SaTScan is utilized for detecting spatial-
temporal clusters by assessing the count of disease events within specific spatial and
temporal windows. This model assumes that the number of cases in each area follows
a Poisson distribution, which is appropriate for rare events like TB notifications
(Kulldorff, 1997).

The likelihood function for the Poisson model is defined as follows:

(A;t;)Ci e Aiti
L) = Miee 0 —

i

Where L(C) is the likelihood of cluster C, c; is the observed number of cases in
location i within the cluster, 4; is the expected number of cases in location i, which is
calculated based on the population at risk, t; is the population or time at risk in

location i.

The expected number of cases A; is determined under the null hypothesis of no

cluster, assuming a homogeneous Poisson process:

n

i=1Ci
Ai = )

ot
i=1"t

Xti

Where n is the total number of spatial and temporal units considered, i, c; is the
total number of observed cases across all units and };7, ¢; is the total population or

time at risk across all units.
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To identify clusters, SaTScan scans the study area using a cylindrical window with a
circular geographic base and a height corresponding to time. The window is moved
systematically over the study region, considering all possible geographic locations
and sizes, as well as different temporal extents. For each window position and size,
the likelihood ratio is calculated by comparing the likelihood of observing the given
number of cases within the window to the likelihood under the null hypothesis
(Kulldorff, 1997).

The likelihood ratio LR for a specific window was given by:

_ L©)
~ L(null)

Where L(null) is the likelihood under the null hypothesis, calculated as:

(At;)" e At

L(null) = []iec - where 1 is the overall expected rate of cases.

Ci!

Clusters were identified as regions with the maximum likelihood ratios, and the
statistical significance of these clusters was assessed using Monte Carlo simulations.
This process involved generating many random datasets under the null hypothesis and
comparing the observed likelihood ratios to the distribution of likelihood ratios from
the simulated datasets.

3.2.3 Ethical considerations
The collection and use of secondary data for this study adhered to ethical guidelines
and regulations governing research involving human subjects. Before conducting the
study, ethical approval and clearance were obtained from the Ministry of Health and
the National Control TB program. This ensured that the study adhered to the
recommended ethical parameters and safeguarded the rights and well-being of
individuals involved in the data collection process. As the study utilized secondary
data obtained from the Central TB Unit, the data had been collected under appropriate
ethical guidelines. To ensure compliance and ethical integrity, the study sought

approval from the original data generators before utilizing and publishing the data.
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This step ensured that the study maintained ethical standards throughout its research
process, demonstrating respect for the rights and confidentiality of individuals whose

information was included in the dataset.

3.3 Statistical Methods for Analysing Spatial-Temporal Dynamics of TB Case
Notification Data
3.3.1 Spatial Model: Spatial scan statistic
The spatial model used in this study was the spatial scan statistic, a powerful tool for
detecting spatial clusters of disease cases. This model allows for the identification of
areas with significantly higher or lower TB case notification rates compared to the
surrounding areas. The spatial scan statistic works by scanning a window across the
study area and comparing the observed number of cases within the window to the
expected number of cases under the null hypothesis of spatial randomness. The
Poisson model is suitable for this analysis because it assumes that the number of cases
follows a Poisson distribution, which is appropriate for rare events such as TB
notifications (Kulldorff, 1997).

The likelihood function for the spatial scan statistic was given by:

_ L)

A
Lo

Where A is the likelihood ratio test statistic, L(A) is the likelihood of observing the
data within the potential cluster A, L, is the likelihood of observing the data under the

null hypothesis.

The potential cluster A was defined by a circular window that varied in size and
location across the study area which is the Northern Region of Malawi. The maximum
likelihood ratio across all possible cluster configurations was calculated, and its
significance was assessed using Monte Carlo hypothesis testing. Using the Poisson
model, the likelihood L(A) for the cluster A was given by:

(it ﬂ)

Ci!

L(A) = Tliea (
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Where A; is the expected number of cases at location i, calculated based on the
population at risk, ¢t; is the population or time at risk in location i, c; is the observed

number of cases at location i.

The expected number of cases A; under the null hypothesis was:

271'1=1 Ci

A=
' Z?:l tl

X t;

Where n is the total number of spatial and temporal units considered, Y7, ¢; is the
total number of observed cases across all units and Y;[-, t; is the total population or

time at risk across all units.
The likelihood ratio LR for a specific window was given by:

_ L)
~ L(null)

Where L(null) is the likelihood under the null hypothesis, calculated as:

L (null) - HLEA

Cl _7 .
—(’“l) where 1 is the overall expected rate of cases.

Statistical tests determined the significance of estimated parameters. For covariates, p-
values indicated whether there were significant associations with the outcome

variable.

3.3.2 Spatial — Temporal Model: Space-time scan statistic
The spatial-temporal model used in this study was the space-time scan statistic, an
extension of the spatial scan statistic that incorporates temporal dimensions. The
space-time scan statistic allows for the detection of clusters of disease cases that are

both spatially and temporally concentrated. This model evaluates the observed
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number of cases within a space-time window against the expected number under the
null hypothesis of spatial-temporal randomness (Kulldorff, 1997).
The model:

A (S t) _ 2:sl-GA(s,t) Y(si ’t)
' Zsi € A(s,t) E(Si ’ t)

Where A (s, t) represents the likelihood ratio for the space-time window (s, t), A (s, t)
denotes the space-time window, Y (s t) is the observed number of cases in the

window, E (s;t) is the expected number of cases under the null hypothesis.

The space-time scan statistic was estimated using likelihood ratio tests, identical to
the spatial scan statistic. The maximum likelihood ratio across all possible space-time

windows was determined:

The Likelihood function for the space-time scan statistic was given by:
L(S, T
L LT
Lo

Where A is the likelihood ratio test statistic, L (S, T) is the likelihood of observing the
data within the space-time window SxT, L, is the likelihood of observing the data

under the null hypothesis.

The space-time window SxT defined both spatial and temporal dimensions and varied
in size and location across the Health Centres in the Northern Region of Malawi from
2013 to 2020. The maximum likelihood ratio across all possible space-time windows

was then calculated, and its significance was assessed using permutation tests.

Using the Poisson model, the likelihood L (S, T) within the space-time window SxT

was expressed as:

(Aet)“ie e 4““)

L(S,T) = Mies ter < ol
it
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Where A;; is the expected number of cases at location i and time t, calculated based on
the population at risk, t; is the population or time at risk in location i, c; is the
observed number of cases at location i and t.

The expected number of cases A;; under the null hypothesis was:

_ To1 Xi=1 Cit

p=r
?:1 Z{:l tl

X t;

Where n is the total number of spatial and temporal units considered, T is the total
number of temporal units considered, Y™ ,¥T_, c;; is the total number of observed
cases across all spatial and temporal units and Y7, »:7_; t; is the total population or

time at risk across all spatial and temporal units.
The likelihood ratio LR for a specific space-time window was given by:

_L(ST
~ L(null)

Where L(null) is the likelihood under the null hypothesis, calculated as:

(iti)cit e—it-

L(null) = [Ties ter - where 1 is the overall expected rate of cases.

Cit:

The expected number of cases A;;was estimated using population at risk and disease
rates for each Health Centre and period. The space-time window was moved
systematically across the study area and time-period, varying in size and location, to
identify the space-time configuration that maximizes the likelihood ratio test statistic.

Statistical tests assessed the significance of estimated parameters. Covariate
coefficients indicated the influence of predictors on the outcome variable over time
and space, while space-time interaction terms captured how this influence varied
across different locations and time periods. Significant covariate coefficients revealed
factors associated with changes in the outcome variable over time and space. Space-

time interaction terms indicated whether the effects of covariates vary across different
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spatial-temporal contexts, highlighting areas and periods with distinct patterns of

disease incidence.
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CHAPTER 4

RESEARCH RESULTS
4.1 Introduction
This chapter presents key research findings, and interpretation of results gathered
from the study. Thus, the chapter presents data through tables, figures, and uses
statistical models to analyse data where among other findings others focuses on
demographic characteristics, distribution of TB cases, cluster coverage, spatial and

temporal distribution of cases, TB hotspots and clusters in Northern Malawi.

4.2 Results of the study
4.2.1 District TB case notification

Key findings depict a total of 12,324 TB case counts were recorded, the highest
recorded year being 2019 with 2098 cases against the lowest in 2020 at 1099 cases.
According to study findings, Likoma District recorded the lowest TB case count at 38,
Mzimba North district had the largest number of reported cases at 5447. Looking at
the case distribution against the population proportion, Rumphi district reported the
highest number of cases (41%), followed by Mzimba North (26%).
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k ) 26%
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Mzimba North B Mzimba South B Nkhatabay

B Rumphi

Figure 2: District TB infection distribution 2013 — 2020.
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4.2.2 Gender and age distribution of TB Cases

45+, 46%

=Female =0-24 =25-44 =45+ = Male

Figure 3: Gender and age group distributions among reported cases.

The study outcomes point out that there were more males infected by TB within the
research period. A total of 7524 cases against 4800 cases for males and females were

recorded representing a 61% and 39% respectively.

The study breaks down reported TB cases into three age groups: 0-24 representing
children and adolescents, 25-44 representing youth and young adults, and 45+
representing middle-aged and elderly individuals. The findings indicate that 46% of
reported cases were from the youth and young adults, followed by the middle-aged
and elderly, with adolescents and children accounting for only 21%. These highlights

varying levels of exposure and prevalence rates.

4.2.3 Trend of TB Infection Rates

Trend of TB Infection Rates ( 2013-2020)
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Figure 4: TB infection Rate trends (2013-2020)
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The overall trend in TB infection rates from 2013 to 2020 showed some fluctuations
but tended to remain relatively stable. There was a slight decrease in the overall
infection rate from 2013 to 2020. Some districts showcased a decreasing trend over
the years, while others showing fluctuations or increases. Likoma consistently showed
higher infection rates compared to other districts, especially in 2017 and 2020.
Rumphi experienced a significant spike in 2014, followed by a gradual decrease in
infection rates over the subsequent years. Chitipa, Karonga, Mzimba North, Mzimba
South, and Nkhatabay generally had lower infection rates compared to Likoma and

Rumphi.

The data also indicated that there were fluctuations in TB infection rates from year to
year within each district. Some years showed increases in infection rates, while others
show decreases. Likoma experienced a notable increase in infection rates in 2017,
followed by a decrease in 2018 and then another increase in 2020 and Rumphi saw a
sharp increase in 2014, followed by a gradual decrease in subsequent years. Some
districts, such as Chitipa, Karonga, Mzimba North, Mzimba South, and Nkhatabay,
indicated relatively stable infection rates throughout the years, with minor

fluctuations.

4.2 .4 Seasonal distribution of TB Cases
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Figure 5: Monthly distributions of TB cases.

Looking at the overall data from 2013 to 2020, August emerges as the month with the
highest recorded number of TB cases in the six districts, with an average of 1660
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cases, a standard deviation of 4.26, and a variance of 20.76. The general trend shows a
sharp decline of cases in the month of September, through October, however, the
lowest registering month is February. However, studying the variations in cases
across the months of a disease goes beyond the number of cases within a month.

The quarterly variation of the Tb diseases by considering the four quarters within each
year was analysed. The third quarter (July, August, and September) registers the most
cases with the second quarter having the least.

4.2.5 TB Hotspot and Cluster identification
Seven significant TB clusters were identified using spatial and space-time Model by
executing spatial variation in temporal trends analysis. A cluster was considered
statistically significant when its test statistic is greater than the Gumbel Critical
Values (GCV) and Standard Monte Carlo Critical Values (SMCCV). Thus at 0.0001
significance level, a cluster was considered if its critical value was greater than
5.472276 GCV and 4.874990 SMCCV. A population size of 1,091,311 averaged over
the 8-year period was considered from which a total number of 12, 324 cases were
detected. The study detected a mean average of annual cases of 1.4 per 100,000 across
the district. The study further analysed the cluster size and spread. The study utilized
the Discrete Poisson probability model in SatScan, which uses population, GPS
coordinates and TB cases as input to develop spatial and space-time clusters. To
replicate the clusters and hotspots, a retrospective Space-Time analysis model for
clusters with high rates using the Space-Time Permutation model was used. The 7
clusters identified across the northern region are summarized below and the outputs

are showcased in appendix 2.
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Figure 6: Spatial Map indicating TB Case Notification Clusters in the Northern Region of

Malawi

The cluster radius was used to define the size of a geographical area around a central
point within which the occurrence of TB case notification was considered significant.
The radius was determined based on the density of the population at risk, and the
spatial distribution of cases. The table below further highlights key parameters
analysed in the study such as the radius of clusters, population size at risk of infection,
expected TB cases against actual cases reported and general time trends over the

period of 8 years.
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Table 1: Retrospective Spatial- Temporal analysis model estimates

Cluster

. 130 553,221 756 645.26 1.7 1.18 15.14 | 0.001

Cluster

) 120 48,339 46 5.58 11.6 8.28 12.9 0.001

Cluster

3 68.29 236,764 1073 277.78 55 414 -15.28 | 0.001

Cluster

A 48.29 509,863 4861 5723.3 1.2 0.75 -5.24 | 0.001

Cluster 6.30E-
33.93 209,863 892 765.3 1.17 5.41 -4.98

5 10

Cluster

6 18 560,904 130 6.72 1.94 1.45 -6.3

Cluster

; 17 67,986 879 72.52 1.2 2.81 -3.8 0.726

-1.08

4.2.5.1 Cluster size and location.
The study applied the spatial-temporal models to determine the size, jurisdiction, and
extent of each cluster to understand their composition and distribution. This analysis
was crucial for identifying patterns and assessing the significance of each cluster. In
terms of the number of health centres within each cluster, the study found that
Clusters 1, 6, and 7 have one health centre each, compared to clusters 2, 3, 4, and 5,

which consist of more than one health centre or hospitals.
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Figure 7: Cluster size and population coverage.

The cluster hotspot with the largest radius is cluster 1 which is surrounded by an
average of 533,221-population size. Cluster 7 has the lowest radius of 17 Km,
surrounding a population of 67,989 and encompasses areas surrounding David

Gordon Memorial Hospital in Rumphi District.

4.2.5.2 TB clusters cases and expectations
Using the Spatial — Temporal Model, the study established the number of cases per
clusters, expected cases and annual cases per 100,000 to analyse the extent to which
each cluster has registered Th cases and project likelihood of future infections. The
highest number of cases was registered in cluster 4 at 4861 cases, while the lowest
number of cases was registered in cluster 6 at 1309. However, the extent of TB case
infestation can’t be looked at outside the context of population and time. Therefore,
the variable annual cases per 100,000 population size was introduced. This variable
incorporates the space and time factor to determine the significance of infection per
each cluster. Numerical ranking of the clusters depicts that the cluster with more
infection per 100,000 population over a one-year period was cluster 2 which
registered 11.6 cases. This means that despite cluster 4 having the largest number of
infections over the 8year period, cluster 2 holds the highest proportional potential risk.
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Figure 8: Number of cases per cluster.

4.2.6 TB Cluster relative risk (RR)
The Relative Risk (RR) of TB cases in the study measured the likelihood of the
occurrence of a TB case after exposure. The study analysed the relative risk within the
7 clusters by using the spatial variation in temporal trends and probability model

using the discrete Poisson model.

As a measure of effect size, an RR value is generally considered clinically significant
if it is less than 0.50 or more than 2.00; that is, the risk is considered halved, or more
than doubled. However, RR values that are closer to 1.00 can be considered clinically
significant if the event is serious of if it is important to public health. An RR less than
1.00 means that the risk is lower in the exposed sample. RR that is greater than 1.00

means the risk is increased in the exposed sample.
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Figure 9: Relative Risks in clusters.

In Figure 9, the relative risk (RR) of the 7 clusters over an 8-year period compared to
the general population is depicted. Following data smoothing, cluster 2 emerged as an
outlier. All clusters except for cluster 4 indicated a RR > 1 which indicated high
likelihood of TB occurrence after exposure. Cluster 1 shows a RR of 1.18, marginally
higher than 1.00. While this indicates a heightened risk among the exposed sample,
the magnitude of this elevation is relatively minor, suggesting limited practical

significance.

4.2.7. Temporal trends of TB Infections
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Figure 10: TB Case notification Temporal Trends
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By deploying a temporal analysis using the Kullorf’s SatScan and temporal time
models, the study analysed the time trend of TB cases within the identified clusters.
The aim was to determine with TB cases were either declining or increasing within
the 8-year period. The general trend of TB notification rates in the region appeared to
decrease by 1.08% in per 100,000 people, where an annual average rate of 84.11 per

100,000 people of infections was registered.
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CHAPTER 5

DISCUSSION OF RESULTS

5.1 Introduction

The study aimed to utilize advanced biostatistical methods to investigate the spatial
distribution of TB, with a particular focus on identifying spatial-temporal clusters
over an 8-year period in Northern Malawi. This chapter provides a comprehensive

discussion of the results obtained from the analysis.

5.2 Gender and Age distribution of Th Cases

According to the World Health Organization annual report, globally it is known that
beyond the age of 15 there are more men reported with TB than women. The study
outcomes point out that there were more males infected by TB within the research
period a total of 7524 cases against 4800 cases for males and females were recorded
representing a 61% and 39% respectively (p>0.001). However, secondary data from
NTP reports shows that National records indicate a 1:1 men and women ratio among
the TB cases notification, with the northern region indicating a 1:3 ratio among
women and men, thus conforming to this study’s findings. Between the ages of 0 and
24 there are more females with positive TB cases than males, the distribution being

equal in the ages of 25 to 34 and more men than women after the age of 34.

The study results indicate that 46% of cases reported were from the youth and young
adults, seconded by the middle aged and elderly, with the adolescents and children
reporting only 21%. This points out to the levels of exposure prevalence rate and how

age correlates with TB infection in the study area.
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5.3 Spatial and Spatial-Temporal clusters of Tb in the Northern Region of
Malawi

Seven clusters have been identified and ranked items of their severity accounting to
the results above. Cluster 1 and 2 encompasses Mzuzu City where two key health
Centres reside namely Mzuzu Central Hospital and Mzuzu Health Centre. These
happens to be the biggest cluster in terms of coverage and radius; mainly because of
the population central hospitals serve and the spatial distribution of cases. Cluster 3
consists of health facilities around Rumphi district while, cluster 4 consists of health
facilities around Mzimba South, and clusters 5 have health facilities in around
Nkhatabay District Hospital. Cluster 6 and 7 each have rural health facilities of
Chitimba and David Gordon memorial hospital as key TB hotspots, these areas have
been singled out because they hold a higher relatively risk (RR) of TB infection to the
public than other facilities in the northern region. Nyirenda (2006) conducted an
epidemiology study of TB cases in Malawi and found similar results as far as the
concentration of cases, however, this study has gone into details of the actual radius of
each hotspot.

The study points out a very high risk that exists in case of an outbreak in the Mzuzu
city, with a 533,210 population at risk. Populations that reside around major cities and
major public hospitals are at a larger risk compared to populations that are away
(Jones et al., 2020). The same is noticed in major semi-urban areas such as Bwengu,
Bolero, Embangweni and Chintheche areas, thus areas that have more economic
activities happening pose a higher risk for TB case infection. A correlation study
however, between economic zones and TB case count needs to explore further this

relationship.

The finding of this study resonates to what Mesay et al. (2015) found in Southern
Ethiopia where the highest potential risks was found to be in a cluster with the lowest
number of infections. This means the extent of infection in health centres around
cluster 2 is the highest. On the other hand, cluster 5 remains the lowest probable
potential annual risk at only with 1.17 cases. On the other hand, the annual case per
100,000 against the 8-year period shows a general decline of the cases at 1.08% every
year in all clusters. This shows that despite TB being a disease of national concern,
there has been some strides in reducing its rate of infection to the public.
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In general terms, despite Cluster 1 having a greater exposure rate to the public in
relation to its radius coverage, its risk factor remains lower than other clusters which
means the likelihood of the occurrence of a TB case after exposure is manageable.
Nonetheless, the cluster still poses a health threat in comparison with other health
facilities in the North. Clusters 2 and 3 however, indicate the highest relative risk for
the TB exposure. This entails that the likelihood of occurrence of a TB case after
exposure in these areas is very high. An outbreak of TB in the area will more likely
expose the general population to the infection. Therefore, areas that have high RR

need to be managed abruptly in case of outbreaks.

Other factors that contribute to the formation of cluster is poverty, overcrowding, and
inadequate access to healthcare (Lénnroth. et al, 2015). These socioeconomic factors
create an environment that facilitates the transmission and progression of TB. Poor
living conditions, limited access to clean water, malnutrition, and lack of proper
sanitation increase the risk of TB infection. It is therefore apparent that the 7 clusters
have formed around similar condition, especially within the sub-urban areas around
major trading centers. The cluster formation can possibly also be explained by the
rapid urbanization in Mzuzu, Mzimba and other cities in the north, which usually
leads to overcrowding, informal settlements, and poor living conditions, which are
conducive to TB transmission. Urban areas often have higher TB burdens and
hotspots due to the concentration of vulnerable populations, such as migrant workers,
slum dwellers, and individuals with limited access to healthcare services (Lawn. et al,
2011). However, there is need for further study to concretely attribute the causative
agents of cluster formation in the study area.

5.4 Tb Spatial Pattern and Distribution

The geospatial analysis in this study identified 7 spatial clusters, which are areas with
a higher concentration of TB cases compared to surrounding areas. These clusters
indicate localized transmission hotspots and areas with common risk factors. By
identifying these clusters, public health officials can focus interventions on high-risk

areas to control the spread of TB.

These clusters are showing disparities in TB distribution between urban and rural

areas. It has been found that urban areas (Mzuzu, Mzimba, Bwengu etc) have higher

43



TB burdens. Despite the presence of the high risks in urban areas, some rural areas
also show some high risks of TB hotspots. According to the WHO, high poverty
levels, limited access to healthcare service delivery and other socio-economic
activities such as agriculture practices increase the risk and exposure to TB (WHO,
2020). The study however gives aerial view of the disparities in terms of distribution
of TB, which is important for health practitioners to properly target their
interventions. But needs further study to establish the exact disparities that exist
between urban and rural areas.

The spatial pattern from this study unfortunately doesn’t explain critical relationship
that exists between TB distributions and environmental factors which are critical in
explaining the occurrences of TB Clusters. Certain environmental conditions, such as
poor air quality, indoor pollution, or specific climate patterns, may contribute to TB
transmission or affect the vulnerability of populations in specific geographic areas
(WHO, 2021). It is important that further studies explore these environmental

conditions on the identified clusters.

Geospatial analysis of TB distributions provides valuable insights for public health
planning, resource allocation, and targeted interventions. It is apparent that the study
has identified high-risk areas and helped to understand the underlying drivers of TB
transmission. It is expected that this data will be used to optimize strategies for

prevention, diagnosis, and treatment for cases within the northern region in Malawi.

5.5 Detection of Tb Spatial — Temporal trends

By applying a temporal analysis using Kullorf’s SatScan and temporal time models,
this study identified time trends of TB cases within the identified clusters. The
objective was to determine whether TB cases were exhibiting a declining or
increasing trend over the 8-year period under investigation. The findings reveal a
notable trend in TB notification rates within the region, indicating a decrease of
1.08% per 100,000 people over the study period. This decline aligns with global
efforts aimed at TB control and prevention (WHO, 2020). However, despite this
overall decrease, an annual average rate of 84.11 TB cases per 100,000 people was
observed, suggesting that TB remains a significant public health concern in the region
(CDC, 2020).
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Nonetheless, the study found that despite having a general decrease in trend, cluster 1
and cluster 2 has an increment rate of 15.14% and 12.90% per 100,000 people. The
increment can be attributed to the increase of urbanization within population
surrounding health facilities in cluster 1 but also increase in TB notification over the

past years.

The temporal analysis employed in this study provides valuable insights into the
dynamic nature of TB transmission and can inform the development of effective
strategies for TB prevention and control at both regional and global levels (Houben &
Dodd, 2016). Overall, the observed decline in TB notification rates is encouraging,
yet sustained efforts are warranted to achieve lasting reductions in TB burden and

move closer to the goal of TB elimination (Houben et al., 2016).
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CHAPTER 6

CONCLUSION

6.1 Introduction

This chapter presents the conclusion of the study and presents a comprehensive
overview of the findings and their implications. Through the utilization of advanced
biostatistical methods, the study investigated the spatial distribution of TB over an 8-
year period, shedding light on the presence of spatial-temporal clusters and trends. It
also dwells on the recommendations deduced from the findings and acknowledge the
limitations inherent in the study.

6.2 Conclusions

This study identified temporal trends and spatial distribution of TB cases in the
northern region of Malawi using spatial and spatial-temporal data analysis. A total of
7 clusters were identified within the region. In general, the spatial trend of TB cluster
follows a pattern whereby areas with the highest population size and located within a
high economic area have the highest risk to the public. These findings suggest that
areas with a higher population density, likely accompanied by increased social
interactions and potential exposure to TB transmission, contribute to the formation of
clusters. Moreover, the presence of economic opportunities in these areas could attract
a larger population, resulting in higher TB transmission rates. In this case it was
observed clusters in the northern Malawi have formed around Central Districts,
District Hospitals, and major rural hospitals. Concurrently, Clusters form around the
city, townships, trading centers, urban centers and semi-urban centers lay within TB
cluster and hotspots. These include Mzuzu City, Chintheche, Bolero, Bwengu,
Embangweni, Jenda, Chitimba, among others.

The analysis of demographic parameters, including sex and age distribution, revealed

important insights regarding the susceptibility to TB infection. The findings indicated
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that males have a higher risk of contracting TB compared to females. This observation
could be attributed to various factors, such as differences in occupational exposure,
lifestyle behaviours, or biological factors that predispose males to a higher

vulnerability.

Furthermore, the study highlighted that individuals between the ages of 24 and 35 are
more susceptible to TB infection. This age group encompasses young adults, who
often reside in urban areas such as cities and townships. The demographic
composition of these urban settings, characterized by a higher concentration of young
adults, can contribute to increased TB transmission. Factors such as migration,
overcrowding, poverty, and a higher prevalence of HIV in urban areas further
compound the risk of TB prevalence. The presence of these contributing factors in
urban areas, including higher population density, greater mobility, and increased
social interactions, can facilitate the transmission of TB among susceptible

individuals.

By studying time trends, the study concludes that there is a general decline of TB
Cases infection within the region at 1.08% annual decrease. Clusters depicting a
decrease in infection rate clearly depicts that huge strides to control the disease are
being taken, however, TB still poses a high risk to the population around clustered
health facilities and the public. Although there has been a significant reduction of the
general incidence, other studies suggests that there has been increase abandonment of

TB medication, which has resulted in recurrent infections.

Similar studies have identified several potential causes for the emergence of clusters
in TB prevalence. These factors include increased poverty levels, high rates of urban
migration, poor access to health services, social determinants, and seasonal effects.
However, it is important to note that further research is necessary to gain a deeper
understanding of these determinants and their specific impact on the formation of TB
clusters. All in all, for policymakers to make informed decisions regarding TB
prevention and control, it is imperative to prioritize and improve the quality of data
collection within health facilities. The challenges associated with data collection pose
significant obstacles for researchers, as they hinder the capturing of key variables
necessary for a better understanding of TB hotspots and clusters.
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6.3 Recommendations

The study concurs with other studies that TB clusters and Hotspots usually
follow a pattern of being around major economic zones, central hospitals, and
urban health centers, with the highest driving factors being population density,
size, high poverty levels, high urban migration, and social behaviours. In the
Northern region, these areas have been classified into 7 clusters. Therefore,
TB programs need to target populations around these economic zones and

central hospitals to reduce the risk of increasing the spread of the infection.

Containment of TB outbreaks will have to concentrate within the 7 clusters
identified in this study and then spillover to other areas. However, within the 7
clusters cluster 1, 3 and 4 offers the highest risk to the public, thus, resource
allocation and targeted interventions within health facilities that fall within

these specific clusters is urged.

The finding that TB cases are highest among males than females at a ratio of
1:3 in the northern region, highlights the need for targeted interventions that
address the specific risk factors and vulnerabilities faced by each gender. By
recognizing the gender disparity in TB prevalence, policy holders and
decision-makers can tailor their interventions to maximize impact and

effectively address the unique challenges faced by males and females.

Young adults of ages between 24-35 are the most affected age group owing to
their heavy involvement in economic activities that increase the risk of TB
infections; therefore, programs will have to incorporate economic
empowerment initiatives in reducing the TB infection as it will aid in
recognizing the interconnectedness of socioeconomic factors and TB
infections, and provide an opportunity to create sustainable and
comprehensive interventions that not only reduce TB infections but also
contribute to the overall well-being and economic empowerment of affected

individuals.

48



e TB cases trend is reducing at an annual rate of 1.08% within the region, this
remains a low target as far as the government’s commitment is concerned.
Therefore, more stringent measures will have to be employed if the annual rate
is to reduce further and this can be achieved by adopting a multi-faceted
approach that combines preventive measures, improved healthcare access,

addressing social determinants, collaboration, and research.

e |t is crucial to enhance data collection at the health facility level by including
additional variables that provide more detailed information for accurately
mapping TB hotspots and clusters at the household level. Currently, the lack
of data on individuals' geo-location, household size, and time of exposure
creates significant gaps in researchers' ability to better understand the disease

at the village or community level.

Capturing individuals' geo-location information allows for precise mapping of TB
cases, enabling researchers to identify specific geographic areas with a high burden of
the disease. This information can help in targeting interventions, resource allocation,

and identifying geographical patterns of TB transmission.

Household size data is important as it provides insights into the dynamics of TB
transmission within households. Understanding the size of households affected by TB
and the potential for intra-household transmission is crucial for implementing

appropriate control measures and designing effective interventions.

Time of exposure data is valuable for assessing the duration and intensity of exposure
to TB. By knowing when individuals were exposed to the disease, researchers can
better understand the temporal patterns of transmission and identify potential risk
factors associated with specific time periods. This information is particularly relevant

for studying seasonal effects and developing targeted interventions.
Collecting such detailed information at the household level may require additional
efforts and resources. It is essential to invest in training healthcare personnel in data

collection techniques that capture these variables accurately and consistently.
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Standardized data collection tools and protocols should be developed to ensure the

systematic and uniform collection of the required information.

Furthermore, ensuring ethical considerations and data privacy safeguards are in place
is crucial when collecting individual-level data. Appropriate consent procedures and
data anonymization techniques should be implemented to protect the privacy and

confidentiality of individuals.

By incorporating geo-location, household size, and time of exposure into data
collection at the health facility level, researchers can gain a more comprehensive

understanding of TB hotspots and clusters at the community level.

6.4 Limitations of study

Clusters and hotspot trends are more accurately assessed when each infection can be
traced to an individual with a known residential GPS coordinate. However, due to the
absence of a registered database of individuals with their residential coordinates in
Malawi, this study utilized health facilities as a proxy. Collecting individual
residential coordinates within the scope of the study would have been time-consuming

and costly, hence the reliance on health facility coordinates.

Additionally, the statistical model employed in this study necessitates the collection of
study controls, which are crucial for understanding the uninfected population.
However, the data collected at health facility levels only focused on the number of

positive cases.
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APPENDIX
Appendix 1: TB Cases per District

Table 2: District Annual TB case notifications

Years
Populatio
Gran
o 201 [ 201 | 201 [201 |201 |201 [201 |202 n
District d .
3 4 5 6 7 8 9 0 Proportio
Total
n (%)
.. 155,457
Chitipa 110 | 102 | 113 |76 124 | 181 | 167 | 114 | 987
(0.63%)
170,317
Karonga |191 [194 | 232 | 204 [196 | 309 [286 |209 |1821
(1.07%)
14,527
Likoma 2 3 4 5 7 6 7 4 38
(0.26%0)
Mzimba 116 203,833
664 | 709 | 579 [660 | 707 |591 376 | 5447
North 1 (2.67%)
Mzimba 395,910
244 237 286 (223 [199 (235 | 250 |216 | 1890
South (0.48%)
Nkhataba 139,083
155 | 156 | 178 | 159 | 183 | 148 | 124 | 109 | 1212
y -0.87%
Rumphi 146 (123 | 103 | 100 [151 | 132 [103 |71 929 4.13%
Grand 151 | 152 | 149 | 142 | 156 | 160 | 209 | 109
12324
Total 2 4 5 7 7 2 8 9
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Appendix 2: TB Cases per Health Centers

Table 3: Health Centre Annual TB case notifications

Health facility against

TB Cases Years

Grand
Health facility 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total
Atupele Health Center 24 13 15 52
Bolero Health Centre 12 20 8 8 14 17 11 6 96
Bulala Health Center 1 6 4 1 10 5 3 30
Bwengu Health Center 2 4 2 1 11 20
Chambo Health Center 9 36 1 46
Chilumba Baracks Health
Center 4 3 7
Chilumba Rural Health
Center 36 28 50 15 37 29 17 22 234
Chintheche Health
Center 39 42 36 26 43 29 28 27 270
Chisala Health Center 2 4 4 10
Chitimba Health Center 5 5 3 13
Chitipa District Hospital | 103 | 92 95 76 95 124 | 85 75 745
David Gordon Memorial
Hospital 22 16 25 24 35 15 6 7 150
Edingeni Health Center 2 3 5 3 9 5 8 35
Ekwendeni Hospital 82 108 | 96 143 | 196 | 167 |126 |44 962
Embangweni Hospital 29 41 44 77 48 21 28 22 310
Emfeni Health Center 6 1 1 5 5 6 4 28
Emfeni Health Centre 6 6
Engucwini Health Center 4 5 3 12
Enukweni Health Center 2 3 6 11
Euthini Health Center 10 14 4 5 11 18 18 8 88
Fulirwa Health Center 5 9 14
Ifumbo Health Center 1 8 1 10
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Iponga Health Center 13 11 11 11 27 28 7 108
Jenda Health Center 8 6 9 7 15 23 13 81
Kachere Health Center 4 9 15 16 13 12 8 77
Kafukule Health Center 3 14 5 11 7 8 3 51
Kameme Health Center 4 7 22 3 4 40
Kapenda Health center 1 4 6 13 27 7 58
Kaporo Health Center 30 28 18 28 27 51 14 23 219
Karonga District Hospital | 125 | 125 | 153 |129 |113 |144 |163 | 114 | 1066
Kaseye Health Center 3 3
Kasoba Health Center 19 15 4 38
Katete Health Center 18 14 5 5 2 6 11 3 64
Katowo Health Centre 2 4 9 7 5 3 2 32
Liuzu Health Centre 7 1 3 11
Lunjika Health Center 4 12 6 5 27
Luwerezi Health Center 4 5 1 3 6 19
Manyamula Health

Center 5 2 6 15 7 3 38
Maula Health Center 2 7 9
Mbalachanda Health

Center 5 6 11
Mhuju Heath Center 5 6 6 8 6 3 34
Misuku Health Center 2 8 3 3 18 34
Mpamba Health Center 11 7 18
Mpherembe Health

Center 3 11 8 14 9 8 9 62
Mwazisi Health Center 3 1 4
mzambazi Health Center 2 5 6 9 5 2 3 32
Mzenga Health Center 4 3 3 9 6 4 29
Mzimba District Hospital | 197 | 140 | 205 | 107 |94 122 | 129 | 143 | 1137
Mzokoto Health Centre 4 1 3 7 5 5 4 29
Mzuzu Central Hospital | 447 |475 |340 |402 |350 |[269 |543 |243 | 3069
Mzuzu Health Center 42 37 48 39 71 81 409 |29 756
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Nkhatabay District

Hospital 115 | 104 |122 |111 |104 |87 59 48 750
Nthalire Health Center 7 9 7 5 7 2 4 41
Nyungwe Health Center 21 8 10 23 18 80
Rumphi District Hospital | 107 | 75 65 56 82 77 64 45 571
St. Annes Health Center 2 2
St. John’s Hospital 77 81 66 63 63 50 47 39 486
St. Peters Hospital 2 3 4 5 7 6 7 4 38
Thunduwike Health

Center 1 1 2
Usisya Health Center 1 2 8 4 11 10 1 1 38
Wenya Health Center 1 3 2 3 1 10
Wiliro Health Center 1 1
Grand Total 1512 | 1524 | 1495 | 1427 | 1567 | 1602 | 2098 | 1099 | 12324

61




Appendix 3: Retrospective Space-Time analysis

SaTScan v10.0.1

Program run on: Thu Jun 23 00:02:38 2022

Retrospective Space-Time analysis scanning for clusters with high rates using the

Space-Time Permutation model.

SUMMARY OF DATA

Study period........................ 2013/1/1 to 2020/12/31.
Number of locations................: 59
Total number of cases............... 12324

CLUSTERS DETECTED

1.Location IDs included.: Mzuzu Health Center
Coordinates / radius.: (11.461114 N, 34.015231 E) / 0 km
Time frame............: 2017/1/1 to 2020/12/31
Number of cases.......: 590
Expected cases........: 390.51.
Observed / expected...: 1.51.
Test statistic........: 45.659302.

2.Location IDs included.: Lunjika Health Center, Thunduwike Health Center,
Mzimba District
Hospital, Bulala Health Center, Manyamula Health Center, Kafukule

Health Center, Euthini Health Center, mzambazi Health Center,
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Embangweni Hospital, Kachere Health Center, Mzuzu Central

Hospital
Coordinates / radius.: (11.764553 N, 33.685669 E) / 48.12 km
Time frame............: 2013/1/1 to 2016/12/31
Number of cases.......: 2622

Expected cases......... 2350.04.
Observed / expected...: 1.12.
Test statistic........: 18.904776.

3.Location IDs included.: Chambo Health Center, Kapenda Health center, Kaseye
Health Center,
Ifumbo Health Center
Coordinates / radius.: (4.201064 N, 32.657917 E) / 606.09 km
Time frame............: 2017/1/1 to 2020/12/31
Number of cases.......: 112
Expected cases........: 60.44.
Observed / expected...: 1.85.
Test statistic......... 17.638308.
P-value................ 0.00000000000000011
4.Location IDs included.: Iponga Health Center, Atupele Health Center, Kaporo
Health Center,
Kasoba Health Center, Misuku Health Center, Fulirwa Health Center
Coordinates / radius.: (9.646008 N, 33.812400 E) / 35.62 km
Time frame............: 2017/1/1 to 2020/12/31
Number of cases.......: 324
Expected cases........: 240.20.
Observed / expected...: 1.35.
Test statistic........: 13.456252.

5.Location IDs included.: Liuzu Health Centre, Mzenga Health Center, Maula Health
Center,
Nkhatabay District Hospital, Chisala Health Center, Chintheche
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Health Center, Mpamba Health Center, St. Johns Hospital
Coordinates / radius.: (11.608619 N, 34.294894 E) / 33.93 km
Time frame............: 2013/1/1 to 2016/12/31
Number of cases.......: 892
Expected cases........: 765.30.
Observed / expected...: 1.17.
Test statistic........: 10.650388.
P-value................ 0.00000000063

6.Location IDs included.: Chitimba Health Center
Coordinates / radius.: (10.618603 N, 34.174103 E) / 0 km
Time frame............: 2017/1/1 to 2020/12/31
Number of cases.......: 13

Expected cases......... 6.72.

Test statistic........: 2.304298.
P-value................ 0.134

7.Location IDs included.: David Gordon Memorial Hospital
Coordinates / radius.: (10.604525 N, 34.110803 E) / 0 km
Time frame............: 2013/1/1 to 2016/12/31
Number of cases.......: 87
Expected cases........: 72.52.
Observed / expected...: 1.20.
Test statistic........: 1.367134.

"A cluster is statistically significant when its test statistic is greater than the critical”
(“Spatio-temporal modelling of human leptospirosis prevalence using the ...”)

value, which is, for significance level:

Gumbel Critical Values:
... 0.00001: 6.467597
....0.0001: 5.472276
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Standard Monte Carlo Critical Values:
..... 0.001: 4.874990
...... 0.01: 3.523549
...... 0.05: 2.814744

Note: The coordinates file contains location IDs with identical coordinates that were
combined

into one location. In the optional output files, combined locations are represented by a
single

location ID as follows:

Chilumba Baracks Health Center: St. Annes Health Center
Emfeni Health Center: Emfeni Health Centre
Wenya Health Center: Wiliro Health Center

PARAMETER SETTINGS

Time Precision: Year
Start Time: 2013/1/1.
End Time: 2020/12/31.
Coordinates File: / Temporal analysis.geo

Coordinates: Latitude/Longitude

Analysis
Type of Analysis: Retrospective Space-Time
Probability Model: Space-Time Permutation
Scan for Areas with: High Rates
Time Aggregation Units: Year
Time Aggregation Length: 4
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Data Checking

Temporal Data Check: Check to ensure that all cases and controls are within the
specified temporal study period.

Geographical Data Check: Check to ensure that all observations (cases, controls, and

populations) are within the specified geographical area.

Spatial Neighbors
Use Non-Euclidean Neighbors file: No
Use Meta Locations File: No
Multiple Coordinates Type: Allow only one set of coordinates per location ID.

Locations Network

Use Locations Network File: No
Locations Network File:

Locations Network Purpose: Network Definition

Spatial Window

Maximum Spatial Cluster Size: 50 percent of population at risk

Window Shape: Circular

Temporal Window

Minimum Temporal Cluster Size: 1 Year
Maximum Temporal Cluster Size: 50 percent of study period

Cluster Restrictions

Minimum Cases in Cluster for High Rates: 2
Restrict High-Rate Clusters: No
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Space And Time Adjustments

Adjust for Weekly Trends, Nonparametric: No

Inference
P-Value Reporting: Default Combination
Number of Replications: 999
Adjusting for More Likely Clusters: No

Cluster Drilldown
Standard Drilldown on Detected Clusters: No

Bernoulli Drilldown on Detected Clusters: No

Spatial Output
Automatically Launch Map: Yes
Compress KML File into KMZ File: No
Include All Location IDs in the Clusters: Yes
Cluster Location Threshold - Separate KML: 1000
Report Hierarchical Clusters: Yes
Criteria for Reporting Secondary Clusters: No Geographical Overlap
Restrict Reporting to Smaller Clusters: No

Temporal Graphs

Produce Temporal Graphs: No

Other Output

Report Critical Values: Yes
Report Monte Carlo Rank: No
Print ASCII Column Headers: No
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Run Options
Processor Usage: All Available Processors
Suppress Warnings: No
Logging Analysis: No

Program completed: Thu Jun 23 00:02:49 2022
Total Running Time: 11 seconds

Processor Usage: 4 processors

68



Appendix 4: Spatial Variation in Temporal Trends analysis

SaTScan v10.0.1
Program run on: Mon Jan 1 03:08:37 2018

Spatial Variation in Temporal Trends analysis scanning for clusters with increasing or

decreasing rates using the Discrete Poisson model.

Scanning for clusters with increasing or decreasing rates using the Discrete Poisson
model.
SUMMARY OF DATA

Study period........................ 2013/1/1 to 2020/12/31.
Number of locations................. 59

Population, averaged over time....: 109131197.

Total number of cases..............: 12324
Annual cases / 100000............... 1.4
Time trend........ccc.............: 1.342% annual decrease

CLUSTERS DETECTED

1.Location IDs included.: Mzuzu Health Center
Coordinates / radius.: (11.461114 N, 34.015231 E) / 0 km
Population............: 5532216
Number of cases....... : 756
Expected cases........: 645.26.
Annual cases / 100000.: 1.7
Observed / expected...: 1.17.
Relative risk.........: 1.18
Inside time trend....: 25.144% annual increase

Outside time trend....: 2.697% annual decrease
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Log likelihood ratio.: 72.771854

2.Location IDs included.: Chambo Health Center
Coordinates / radius.: (4.201064 N, 32.657917 E) / 0 km
Population............: 48339
Number of cases.......: 46
Expected cases........: 5.58.
Annual cases / 100000.: 11.6
Observed / expected...: 8.25.
Relative risk.........: 8.28

3.Location IDs included.: Katowo Health Centre, Mwazisi Health Center, Bolero
Health Centre,
Rumphi District Hospital, Bwengu Health Center, Mhuju Heath
Center,
Nthalire Health Center, Enukweni Health Center, Mpherembe Health
Center, Engucwini Health Center, Mzokoto Health Centre,
Mbalachanda
Health Center, David Gordon Memorial Hospital
Coordinates / radius.: (10.812678 N, 33.522375 E) / 68.29 km
Population............: 2367646
Number of cases.......: 1073
Expected cases........: 277.78.
Annual cases / 100000.: 5.5
Observed / expected...: 3.86.
Relative risk.........: 4.14
Inside time trend....: 15.277% annual decrease
Outside time trend....: 0.982% annual decrease
Log likelihood ratio.: 49.032186
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4.Location IDs included.: Lunjika Health Center, Thunduwike Health Center,
Mzimba District
Hospital, Bulala Health Center, Manyamula Health Center, Kafukule
Health Center, Euthini Health Center, mzambazi Health Center,

Embangweni Hospital, Kachere Health Center, Mzuzu Central

Hospital
Coordinates / radius.: (11.764553 N, 33.685669 E) / 48.12 km
Population............. 50986358

Number of cases.......: 4861
Expected cases........: 5723.30.
Annual cases / 100000.: 1.2
Observed / expected...: 0.85.
Relative risk.......... 0.75

ote: The coordinates file contains location IDs with identical coordinates that were
combined.

into one location. In the optional output files, combined locations are represented by a
single

location ID as follows:

Chilumba Baracks Health Center: St. Annes Health Center
Emfeni Health Center: Emfeni Health Centre
Wenya Health Center: Wiliro Health Center

PARAMETER SETTINGS
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Case File: / Temporal analysis (2). cas
Population File: /

Time Precision: Year

Start Time: 2013/1/1.

End Time: 2020/12/31.

Coordinates File:

Coordinates: Latitude/Longitude

Analysis
Type of Analysis:
Scan for Areas with: Increasing or Decreasing Rates
Time Aggregation Units: Year
Time Aggregation Length: 4

Data Checking

Temporal Data Check: Check to ensure that all cases and controls are within the
specified temporal study period.

Geographical Data Check: Check to ensure that all observations (cases, controls, and

populations) are within the specified geographical area.

Spatial Neighbors
Use Non-Euclidean Neighbors file: No
Use Meta Locations File: No

Multiple Coordinates Type: Allow only one set of coordinates per location ID.

Locations Network

Use Locations Network File: No
Locations Network File:
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Locations Network Purpose: Network Definition

Spatial Window
Maximum Spatial Cluster Size: 50 percent of population at risk

Window Shape: Circular

Cluster Restrictions
Minimum Cases in Cluster for High Rates: 2
Restrict High-Rate Clusters: No
Restrict Low-Rate Clusters: No

Space And Time Adjustments
Temporal Adjustment: None
Adjust for Weekly Trends, Nonparametric: No

Adjust for known relative risks: No

Inference

P-Value Reporting: Default Combination
Number of Replications: 999
Adjusting for More Likely Clusters: No

Cluster Drilldown

Standard Drilldown on Detected Clusters: No

Spatial Output

Automatically Launch Map: Yes
Compress KML File into KMZ File: No
Include All Location IDs in the Clusters: Yes
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Cluster Location Threshold - Separate KML: 1000

Report Hierarchical Clusters: Yes

Criteria for Reporting Secondary Clusters: No Geographical Overlap
Restrict Reporting to Smaller Clusters: No

Other Output
Report Critical Values: No
Report Monte Carlo Rank: No
Print ASCII Column Headers: No

Run Options
Processor Usage: All Available Processors
Suppress Warnings: No
Logging Analysis: No

Program completed: Mon Jan 1 03:08:57 2018
Total Running Time: 20 seconds

Processor Usage: 4 processors
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