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ABSTRACT 

Tuberculosis (TB) presents a significant public health challenge, particularly in high 

disease burden countries in Africa, such as Malawi. The extent of this problem varies 

across different settings. Understanding the spatial variation and underlying causes of 

TB prevalence is crucial for comprehending and addressing the epidemic. Therefore, 

the utilization of geospatial analytical methods and spatial temporal models is vital in 

analysing and detecting spatial and spatial-temporal clustering of infectious diseases. 

This study investigated the spatial distribution and presence of spatial-temporal 

clusters of TB in various geographic settings over an eight-year period (2013 – 2020) 

in Northern Malawi. Specifically, the study aimed to identify temporal trends, spatial 

patterns, infectious disease clusters or hotspots and cluster coverage related to TB.  

Spatial and spatial temporal statistical analyses were employed, utilizing Kulldorff's 

scan statistics tool, through the implementation of Spatial and Spatial-temporal 

models. The findings revealed the presence of seven clusters or hotspots within the 

study area. The model identified a cluster pattern where hotspots were observed in 

areas characterized by relatively higher population sizes and densities, predominantly 

located within economically developed zones. Notably, the clusters or hotspots in 

Northern Malawi were found to form around Central Districts, District Hospitals, 

major rural hospitals, as well as urban and semi-urban centres, including Mzuzu City, 

Chintheche, Bolero, Bwengu, Mzimba Boma, Embangweni, Jenda, Chitimba, among 

others. By analysing time trends, the study observed a general decline in TB infection 

cases within the region, with an annual decrease of 1.08%. These results indicate 

significant progress in disease control efforts. However, TB still poses a considerable 

risk to the population residing in proximity to clustered health centres. 
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CHAPTER 1 

 

 INTRODUCTION 

1.1 Background 

Tuberculosis (TB) presents a significant challenge to public health, particularly in 

high disease burden countries, which are primarily concentrated in Asia and Africa 

(Centers for Disease Control and Prevention, 2020). The geographic distribution of 

TB varies globally and within countries, influenced by factors such as socio-economic 

conditions, overcrowding, poverty, limited access to health services, socio-cultural 

barriers, and HIV infection (Chen, 2019; Nagamine et al., 2008). Socioeconomic 

status also plays a crucial role, with an association between high TB incidences and 

low socioeconomic status observed in most developing countries (Rubel & Garro, 

1992; Souza et al., 2007). 

 

World Health Organization (WHO) estimates indicate that approximately 9.4 million 

people develop active TB annually, with over 2.8 million cases occurring in Africa, a 

trend exacerbated by the HIV epidemic (WHO, 2020). TB remains a global public 

health concern, with variations in incidence not only among countries but also within 

different regions of a country (WHO, 2020). These differences are influenced by 

various epidemiological and social factors, including lifestyle, smoking, occupation, 

and exposure to risk factors (WHO, 2020). 

 

In Malawi, a landlocked country in southeastern Africa, TB control faces challenges 

due to limited healthcare infrastructure, socioeconomic disparities, and high rates of 

HIV co-infection (Tadesse & Demissie, 2019). Despite improvements in case 

detection and treatment outcomes, the spatial distribution, and temporal dynamics of 

TB transmission in Malawi, particularly in the northern region, remain poorly 

understood. 
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Spatial distribution analysis has been instrumental in highlighting regional variations 

in disease prevalence (Garrido et al., 2015). Spatial-temporal analysis, a powerful 

epidemiological tool, provides insights into the geographical distribution and temporal 

trends of infectious diseases like TB. By analysing TB cases across space and time, 

researchers can identify spatial clusters, temporal patterns, and high-risk populations, 

informing targeted interventions and resource allocation strategies. (Tadesse & 

Demissie, 2019) 

 

The northern region of Malawi, encompassing districts such as Karonga, Rumphi, and 

Mzimba, presents a unique setting for TB epidemiology research. Despite being 

relatively understudied compared to other regions, the northern region grapples with a 

significant TB burden, exacerbated by poverty, limited healthcare access, and 

population mobility (Mhimbira et al., 2017). 

 

1.1.1 Spatial clustering of TB data 

The identification of geographical areas with ongoing disease transmission, using 

geographic information systems and spatial-temporal statistical analyses, has become 

indispensable. Spatial-temporal clustering methods aid in the identification of a 

greater density of occurrences of a phenomenon in certain places at certain times 

(Vargas, 2004). These techniques have been intensively applied in several areas, such 

as demography, criminology, and toxicology. For epidemiologists, disease clustering 

is a technique of major interest that has been studied for many decades. For effective 

disease management, it is essential to know when, where, and to what degree a 

disease is present. In the last decade, there has been a rapid development of spatial-

temporal clustering techniques applied to health, in the assessment of infectious 

diseases, cancer, rheumatism, diabetes, and accidents and to detect the infectious 

disease hotspots of a variety of infectious diseases in many countries across the 

continent (Vargas, 2004). 

 

Studies such as Miandad et al. (2014) conducted in Karachi, Pakistan and Bastida et 

al. (2012)   reported spatial and spatial-temporal clustering of TB, thereby generating 

valuable information about the distribution of the disease. However, these studies 

were conducted in urban settings over a brief period, which makes them deficient in 

detecting the pattern of the disease distribution in rural areas. (Vargas, 2004) 
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1.1.2 Case Studies and spatial-temporal Analysis of TB in Malawi 

Nyirenda et al. (2005) explored the use of geographical information systems in TB 

control efforts in Malawi. The study assessed the effectiveness of GIS in enhancing 

TB control strategies and understanding disease dynamics. GIS technology was used 

to analyse spatial patterns of TB incidence and distribution within Malawi. The study 

integrated spatial data on TB cases with geographical information, facilitating the 

visualization of TB hotspots, disease clusters, and areas with high disease burden. 

However, one potential limitation was the temporal aspect, as the study was 

conducted in 2005, and TB control strategies and technologies may have evolved 

since then. The findings may not fully reflect the current landscape of TB control 

efforts in Malawi, and newer developments in GIS technology may have enhanced its 

utility in TB surveillance and control. 

 

Kirolos et al. (2021) conducted a study on tuberculosis (TB) case notifications in 

Malawi, focusing on seasonal and weather-related trends. The research aimed to 

identify patterns and correlations between TB incidence and seasonal variations, as 

well as weather conditions. Statistical models were used to analyse TB case 

notifications, including time series analysis and regression models. The focus on 

seasonal and weather-related factors, providing insights into environmental influences 

on TB transmission highlighted the strengths of this study. 

 

Khundi et al. (2021) conducted a multilevel epidemiological analysis in urban 

Blantyre, Malawi, focusing on clinical, health systems, and neighbourhood 

determinants of TB case fatality. The study used surveillance data to provide insights 

into factors influencing TB mortality rates. A notable strength of the study was in its 

comprehensive approach, which examined multiple determinants of TB case fatality 

at various levels. The study offered a holistic understanding of TB mortality dynamics 

in urban Blantyre by considering clinical, health systems, and neighbourhood factors. 

Additionally, the utilization of enhanced surveillance data enhanced the reliability and 

accuracy of the findings, contributing to a more robust analysis. 

 

However, despite these strengths, the study may have limitations. One potential 

limitation is the focus on only one urban district, Blantyre, which may not fully 

capture the dynamics of TB case fatality in rural areas or other regions of Malawi. 
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This geographical limitation may impact the generalizability of the findings to other 

settings within the country. Additionally, while the study provides valuable insights 

into clinical and health system determinants of TB mortality, other factors such as 

socio-economic determinants or access to healthcare services may not have been fully 

explored. Therefore, future research could benefit from a more comprehensive 

examination of TB case fatality determinants, encompassing a broader range of 

factors and geographical contexts. 

 

Nightingale et al. (2021) analysed community-level variation in TB testing history 

based on a prevalence survey in Blantyre, Malawi. The study assessed disparities in 

TB testing practices across different communities within Blantyre. The study’s focus 

on community-level variation, which provided insights into disparities in healthcare 

access and utilization at the local level proved to be its notable strength. The study 

enhanced the understanding of factors influencing TB diagnosis and healthcare-

seeking behaviour by examining TB testing history across multiple communities. 

Conversely, the study's focus on a specific geographic area (Blantyre, Malawi) limits 

the generalizability of the findings to other regions or countries.  

 

While these spatial and temporal analysis methods have been widely applied in TB 

research, there is limited literature specifically addressing their application in the 

context of the northern region of Malawi. This gap in knowledge highlights the need 

for studies that apply these advanced statistical methodologies to analyse TB data in 

this region and elucidate the spatial-temporal dynamics of TB case notification.  

 

1.1.3 Global Case Studies: Spatial-temporal Analysis of Tb 

Bastida et al. (2012) conducted a research study with the primary objective of 

utilizing spatial statistics program SCAN and GIS to identify the spatial and temporal 

distribution of TB from 2006 to 2010 in the State of Mexico. The study utilized 

population data on TB cases reported from 499 localities during the specified period. 

Spatial and space-time analysis techniques were used to analyse the data. The findings 

revealed nine significant clusters (P < 0.05) of TB incidence, indicating that TB in the 

State of Mexico was not randomly distributed but rather concentrated in specific areas 

close to Mexico.  
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The study demonstrates several strengths that contribute to our understanding of TB 

epidemiology in the State of Mexico. Firstly, the utilization of advanced spatial 

statistics program SCAN and GIS techniques allowed for the identification of 

significant TB clusters and hotspots, providing valuable insights into the spatial 

distribution of TB cases. Additionally, the comprehensive geographic coverage of the 

study, encompassing data from 499 localities, facilitated a thorough assessment of TB 

distribution patterns, ensuring a representative sample for analysis.  

 

However, despite these strengths, a notable drawback is the limited temporal scope of 

the study, which focused solely on TB incidence from 2006 to 2010. This narrow 

timeframe restricts the assessment of long-term TB epidemiology trends and limit the 

findings' predictions to other periods. This limitation has contributed to the rationale 

for this study, which focuses on examining spatial-temporal trends in TB case 

notification over an eight-year period. 

 

Miandad et al. (2014) conducted a study in Karachi, Pakistan, with the primary 

objective of using exploratory disease mapping to determine salient spatial patterns of 

TB and demarcate concentration zones of TB patients in the study area. The research 

context was significant with reference to WHO and the International Union against 

TB and lung diseases characterizing Pakistan's TB situation as one of the worst in the 

world. The Government of Pakistan, in collaboration with WHO, launched a TB 

control program nationwide, including in Karachi, providing TB diagnosis equipment 

and financial support to health centers and NGOs for free TB testing of suspected 

patients. 

 

The study utilized spatial analysis techniques, including GIS applications, to analyse 

TB patient data recorded at TB diagnosis centers in Karachi from 2010 to 2013. The 

findings revealed a gradual increase in the number of TB patients during the study 

period, with a notable decrease in 2012. Furthermore, the spatial analysis indicated 

that most TB patients belonged to low-income groups and resided in kacchi abadies, 

underscoring the socio-economic disparities in TB incidence. 

 

One notable strength of the study by Miandad et al. (2014) was in its utilization of 

GIS technology for spatial analysis. The study was able to identify spatial patterns and 
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concentration zones of TB patients, providing valuable insights for targeted 

intervention strategies by leveraging GIS applications. Like the study conducted by 

Bastida et al. (2012), one notable drawback was the relatively restricted temporal 

scope of the research, which exclusively examined TB patient data in a narrow 

timeframe from 2010 to 2013. Additionally, while the findings provide insights into 

TB patterns in Karachi, they may not be readily applicable to other regions or 

countries with different socio-economic and healthcare contexts. Hence, there is a 

need for the adoption of holistic approaches when conducting similar studies, 

encompassing the entire region. 

 

Dangisso et al. (2015) conducted a retrospective space-time and spatial analysis to 

explore the spatial and spatial-temporal patterns of smear-positive pulmonary 

tuberculosis (PTB) in Ethiopia, a country burdened with high TB rates and regional 

variations in case notification rates. The study, conducted at the kebele level (the 

lowest administrative unit within a district), aimed to identify clusters of PTB cases 

and understand their distribution across different settings. 

 

The study’s comprehensive approach, utilizing a range of statistical methods 

including scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics for 

spatial analysis is recommended. The study analysed data from 22,545 smear-positive 

PTB cases notified over a period of 10 years, providing a robust dataset for spatial-

temporal analysis. The findings revealed significant spatial and spatial-temporal 

clusters of PTB cases across multiple districts, shedding light on the geographic 

distribution of the disease and its temporal dynamics. Conversely, one potential 

limitation is the reliance on basic management unit (BMU) reports for TB case 

notification data. BMU reports may not accurately reflect the true burden of TB in 

specific administrative catchment areas, as they may include cases from neighboring 

catchments or miss cases from their own catchment enrolled in other health facilities. 

This could lead to over- or underreporting of TB cases, potentially impacting the 

accuracy of the spatial-temporal analysis. 

 

Li Huang et al. (2017) conducted a spatial-temporal cluster analysis of pulmonary 

tuberculosis (PTB) in Zhaotong, China, using town-level PTB registration data from 

2011 to 2015. Robust statistical methods, including time series analysis, descriptive 
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analysis, and spatial and space-time scan statistics were administered to 

comprehensively explore PTB epidemiology. The analysis encompassed various 

epidemiological parameters, such as age, gender, treatment history, and geographic 

location, providing a detailed understanding of PTB incidence patterns. Spatial 

visualization techniques aided in identifying high-risk areas, while temporal analysis 

revealed seasonal variations in PTB incidence. However, the study's limitations, 

including its focus on a specific geographic area and time, potential data quality 

issues, and the absence of exploration of confounding factors, should be 

acknowledged. 

 

Aceng et al. (2024) conducted a retrospective analysis spanning ten years to examine 

the spatial distribution and temporal trends of TB case notifications in Uganda. The 

study aimed to provide insights into the geographic spread of TB cases over time and 

identify any temporal trends in TB incidence. The study’s long-term perspective, 

covering a decade of TB case notifications is recommendable. This extended 

timeframe allowed for the identification of trends and patterns in TB incidence over 

time. Furthermore, the spatial analysis conducted in the study provided valuable 

insights into the geographic distribution of TB cases across different regions of 

Uganda. By mapping TB case notifications, the study highlighted areas with higher 

TB burden, which can inform targeted interventions and resource allocation for TB 

control strategies. The integration of spatial and temporal analyses enhances the 

study's utility in identifying areas of persistent TB transmission and monitoring 

changes in TB incidence over time. 

 

1.2 Problem statement 

Understanding the spatial variation and underlying causes of TB prevalence is critical 

for effective epidemic management. Geospatial analytical methods, combined with 

advanced statistical models, are instrumental in detecting spatial and spatial-temporal 

clustering of infectious diseases. While previous studies have employed these 

methods, significant gaps remain in the biostatistical approaches used, particularly in 

the context of TB research in Northern Malawi. 

 

Existing research has often focused on urban settings or has been limited in scope by 

short time frames and restricted geographical areas. For example, studies by Miandad 
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et al. (2014) in Karachi, Pakistan, and Bastida et al. (2012) in the State of Mexico 

have successfully identified spatial-temporal clusters of TB. However, these studies 

were conducted in urban settings over a brief period, which makes them deficient in 

detecting the broader, long-term spatial-temporal patterns necessary for rural areas 

with different socio-economic contexts. These studies primarily utilized descriptive 

spatial analysis techniques, which, while useful, do not fully leverage the potential of 

more advanced biostatistical models to uncover deeper insights into disease dynamics. 

In Malawi, studies such as those by Nyirenda et al. (2005) and Kirolos et al. (2021) 

have applied Geographic Information Systems and time-series analysis to TB data. 

However, these studies often lack the integration of robust spatial-temporal statistical 

models that can provide a more subtle understanding of the patterns and trends in TB 

incidence. For instance, Nyirenda et al. (2005) focused on the application of GIS for 

spatial patterns but did not employ advanced spatial-temporal clustering methods, 

thus missing the opportunity to identify dynamic changes over time. 

 

Furthermore, Khundi et al. (2021) and Nightingale et al. (2021) provided valuable 

insights into TB determinants and testing practices in specific areas of Malawi. Yet, 

these studies were limited to urban settings or focused narrowly on community-level 

variations without applying comprehensive spatial-temporal statistical techniques that 

could capture broader regional patterns and trends. Their methodologies often relied 

on simple statistical analyses that did not account for the complexities of spatial-

temporal interactions. 

 

Geospatial analytical methods, combined with scan statistics, are instrumental in 

detecting spatial and spatial-temporal clustering of infectious diseases. However, 

existing TB program reports in many regions, including Northern Malawi, are often 

compiled, and reported quarterly at higher administrative units, lacking essential 

information such as population size, geographic coordinates, and temporal trends. 

This limitation impedes the accurate identification of hotspots and clusters using 

modern spatial-temporal techniques and approaches. The aggregation of TB case 

notifications at high administrative levels (e.g., district or region) obscures finer-scale 

spatial patterns that may be critical for identifying localized hotspots. High-resolution 

spatial data, including geographic coordinates of TB cases, are essential for precise 

spatial analysis. Without this, spatial clustering, and hotspot detection methods, such 
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as spatial scan statistics, cannot be effectively applied. Studies like those by Miandad 

et al. (2014) in Karachi and Bastida et al. (2012) in Mexico utilized detailed spatial 

data to identify TB clusters, but similar high-resolution data are often lacking in 

Northern Malawi. 

 

The gap in the current literature is evident in the lack of application of advanced 

biostatistical methods, such as Space-Time Scan Statistics, which can provide a more 

rigorous analysis of spatial and temporal clustering of TB. This method allows for the 

detection and characterization of clusters not only in space but also in time, providing 

a dynamic view of disease spread and identifying high-risk periods and locations. By 

leveraging Space-Time Scan Statistics, this study aims to fill the gap in existing 

research by providing a detailed analysis of the spatial and temporal dynamics of TB 

in Northern Malawi. This approach will enable the identification of significant 

clusters and high-risk areas over an extended period, offering insights that are crucial 

for targeted intervention strategies and resource allocation.  

 

In conclusion, the primary gap in the current literature lies in the insufficient 

application of advanced biostatistical methods to understand the spatial-temporal 

distribution of TB in Northern Malawi. By addressing this gap, this study not only 

enhances the understanding of TB epidemiology but also has significant implications 

for public health policy and the formulation of targeted and effective TB control 

strategies in the region. 

 

1.3 Objectives 

1.3.1 Main Objective 

To utilize advanced biostatistical methods to investigate the spatial distribution of TB 

focusing on the presence of spatial-temporal clusters over an 8-year period in 

Northern Malawi. 

 

1.3.2 Specific Objectives 

 To utilize spatial and spatial-temporal models to identify significant spatial 

and spatial-temporal clusters of TB within the northern region of Malawi. 
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 Apply spatial-temporal statistical models to detect and characterize infectious 

disease cluster coverage and radius.  

 Employ Spatial and Spatial – temporal Statistical methods to discern temporal 

trends and spatial patterns of TB across the northern region of Malawi. 

 

1.4 Significance of the study 

Limited research has been conducted on the spatial-temporal analysis of TB in 

Malawi hence lack of substantial evidence regarding the distribution patterns of TB in 

different settings. Understanding the spatial patterns and spatial-temporal variations of 

the disease, particularly in diverse geographic settings encompassing both urban and 

rural areas, holds significant potential for informing policy and decision-making 

processes in resource-constrained settings. This study aims to contribute to a 

comprehensive understanding of the distribution of TB cases across health facilities, 

while also examining cluster patterns to discern how TB cases are spatially and 

temporally dispersed. Such insights will assist public health authorities in predicting 

the potential risks posed to the general population in the event of a pandemic. 

Additionally, the study will provide valuable input into the general research database 

of the Malawi Spatial Data Platform, thereby facilitating future geographic 

information system studies and TB modelling. Consequently, this study serves as a 

foundational step towards investigating the spatial and temporal distribution patterns 

of TB cases in Northern Malawi 

 

1.5 Thesis Structure 

This thesis report is organized as follows: Chapter two contains a literature review 

that outlines a review of studies on spatial-temporal analysis of TB conducted across 

the countries. Chapter three outlines the methodological approach of the study, it 

describes the specific details of data, its sources, and the methods to be used for data 

analysis. It also describes spatial and temporal models used in the identification of 

clusters, hotspots, and time trends. Chapter four presents’ results from the application 

of methods outlined in chapter three. Results are presented in tabular and figures to 

summarize findings. Chapter five discusses the results and Chapter 6 outlines main 

conclusions and recommendations from the study. A list of references used follows 

from chapter six. Appendices outline raw data and Sat scan analytical results.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter reviews the commonly applied Spatial- temporal models and their 

application in detecting spatial and spatial-temporal clustering of infectious diseases. 

It aims to delineate the gaps in knowledge that the current study aims to fill, discuss 

the assumptions and variations of each model, and provide detailed methods of 

estimation, including maximum likelihood and expectation-maximization algorithms. 

 

2.2 Space-Time Scan Statistics model 

Space-Time Scan Statistics uses likelihood ratio tests to identify clusters of events in 

space and time, facilitating the detection of disease hotspots (Kulldorff, 1997). The 

model assumes a Poisson distribution for disease events and tests the null hypothesis 

of spatial and temporal randomness. Variations may include different scan window 

shapes and sizes, allowing for flexibility in cluster detection. The interpretation of 

these statistics involves assessing the significance of identified clusters and 

understanding their implications for disease transmission dynamics. This is 

represented as follows: 

 

  
 

   
           

              

   
 

 

Where D is the test statistic representing the likelihood ratio, P is the set of all 

possible space-time cylinders, Op is the observed number of cases within the space-

time cylinder p and Ep is the expected number of cases within the space-time cylinder 

p, calculated based on the null hypothesis of spatial and temporal randomness 

(Kulldorff, 1997). 
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2.2.1 Method of estimation 

The likelihood ratio test compares the observed and expected number of cases within 

each space-time cylinder. A high value of D indicates a higher-than-expected number 

of cases within a particular space-time cylinder, suggesting the presence of a disease 

cluster. Interpreting the results involves assessing the statistical significance of 

identified clusters. Significant clusters indicate areas where the observed number of 

cases deviates significantly from the expected number, suggesting spatial-temporal 

aggregation of disease (Kulldorff, 1997).  

 

Maximum likelihood estimation for the Space-Time Scan Statistics model involves 

maximizing the likelihood ratio over all possible space-time cylinders. The likelihood 

ratio for a given cylinder p is calculated as follows: 

 

  (         )  (
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(
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Where N is the total number of cases in the study region and period and 

           are as defined above. 

 

The likelihood function is evaluated for each potential cluster, and the maximum 

likelihood ratio is identified. This maximum value represents the most likely cluster 

of disease events, and its statistical significance is assessed using Monte Carlo 

simulations to generate a distribution of likelihood ratios under the null hypothesis 

(Kulldorff, 1997).  

 

In cases where the model includes latent variables representing unobserved 

heterogeneity or missing data, the Expectation-Maximization (EM) algorithm can be 

applied. The EM algorithm is an iterative method for finding maximum likelihood 

estimates of parameters in models with latent variables. It involves two main steps: 

the Expectation (E) step and the Maximization (M) step. In the E-step, the expected 

value of the log-likelihood function is calculated with respect to the current estimates 

of the latent variables. This is represented as 
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Where      represents the current estimates of the parameters, X denotes the observed 

data, and Z represents the latent variables and log L (       is the complete-data log-

likelihood function. 

 

In the M-step, the expected log-likelihood function obtained in the E-step is 

maximized to update the parameter estimates, represented as  

 

                ( | 
   ) 

 

These steps are iterated until convergence, meaning the change in the parameter 

estimates between iterations falls below a predefined threshold. Once the parameters 

are estimated using either MLE or the EM algorithm, interpreting the results involves 

assessing the statistical significance of the identified clusters. Significant clusters are 

those where the observed number of cases deviates significantly from the expected 

number, suggesting areas of spatial-temporal aggregation of disease (Dempster, Laird, 

& Rubin, 1977). 

 

2.3 Spatiotemporal point process models 

Spatiotemporal point process models aim to characterize the intensity functions of 

disease occurrence across both space and time. These models, as described by Diggle 

(2013), provide a detailed framework for understanding disease dynamics by 

capturing baseline intensity, spatial and temporal trend components, and residual 

variation. The general form of a spatiotemporal point process model is given by the 

equation: 

 

                               

 

In this equation λ (s, t) represents the intensity function of the point process at location 

s and time t, μ, (s, t) denotes the baseline intensity, capturing the underlying average 

rate of disease events,  α(s) and β(t) represent spatial and temporal trend components, 

respectively, accounting for systematic variations in disease occurrence across space 
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and time and γ (s, t) captures the residual spatiotemporal variation not explained by 

the baseline intensity or trend components. 

 

The key assumptions of spatiotemporal point process models include the assumption 

of stationarity, similarly to STARIMA models, and the assumption of independence 

between spatial and temporal components. Variations of these models include 

different specifications for trend components and methods for incorporating spatial 

and temporal dependence. This includes Poisson Point Process which assumes that 

events occur independently and uniformly over space and time and the cox Process 

which incorporates a stochastic process to model varying intensity. 

 

2.3.1 Method of estimation 

Parameter estimation for spatiotemporal point process models typically involves 

maximum likelihood or Bayesian methods. These methods optimize the likelihood 

function given the observed data, accounting for both spatial and temporal 

dependencies. Interpretation of the model parameters involves understanding how 

each component contributes to the overall intensity of disease events. Diggle (2013). 

 

For MLE, the log-likelihood function is maximized: 

 

           ∑    
 

   
                 

   
              

 

Where   represents the vector of model parameters,         are the spatial and 

temporal domains. 

 

The Expectation-Maximization algorithm for the Space-Time Scan Statistics model 

can be adapted for use with the spatiotemporal point process model, particularly in 

cases where there is incomplete data or latent variables that need to be estimated. 

Once the parameters are estimated using either MLE or the EM algorithm, the 

interpretation involves understanding how each component contributes to the overall 

intensity of disease events. The baseline intensity        reflects the underlying 

average rate of disease occurrence, providing a baseline measure against which other 

components are compared. The spatial trend      indicates systematic spatial 
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variations in disease risk, helping identify areas with higher or lower disease rates. 

The temporal trend      captures systematic temporal variations, revealing periods 

with increased or decreased disease activity. The residual variation        accounts 

for remaining spatiotemporal variation, identifying deviations from the baseline and 

trend components (Diggle, 2013). 

 

2.4 Space-Time Autoregressive Integrated Moving Average (STARIMA) model  

In the context of spatial-temporal modelling, various methodologies are to analyse the 

intricate dynamics of disease spread and distribution. One such approach is the Space-

Time Autoregressive Integrated Moving Average (STARIMA) model, which 

incorporates both spatial and temporal dependencies into the analysis through 

autoregressive and moving average components.  

                                      

 

Where       denotes the response variable at time t and space s, while α, β, γ, δ 

represent model coefficients, and       is the error term (Cressie and Wikle, 2015). 

 

The STARIMA model assumes stationarity in both spatial and temporal dimensions, 

implying that the statistical properties of the data remain constant over time and 

space. Variations of the STARIMA model include variations in the order of 

autoregressive and moving average components, allowing for flexibility in capturing 

different patterns of disease transmission. 

 

2.4.1 Method of estimation 

Estimation of the STARIMA model parameters typically involves maximum 

likelihood estimation, where the parameters are optimized to maximize the likelihood 

function given the observed data. The estimation process includes fitting the model to 

the data using iterative algorithms, such as the Kalman filter, and interpreting the 

estimated coefficients to understand their impact on disease dynamics (Cressie and 

Wikle, 2015). 

 

The likelihood function for the STARIMA model can be expressed as: 
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Where   represents the vector of model parameters and   is the probability density 

function of     . 

 

The Expectation-Maximization algorithm for the STARIMA Model can be adapted 

for use with the spatiotemporal point process model. Once the parameters are 

estimated using either MLE or the EM algorithm, the interpretation involves 

understanding how each component contributes to the overall spatial-temporal 

dynamics of the response variable. The coefficient α\alphaα represents the intercept 

term, while β, γ, and δ capture the temporal and spatial dependencies. The error term 

     accounts for random noise in the model. 

 

2.5 Space-Time Generalized Linear Mixed Models (ST-GLMMs) 

Space-Time Generalized Linear Mixed Models integrate generalized linear models 

with spatial and temporal random effects, offering a comprehensive framework for 

analysing spatial-temporal data (Diggle et al., 2013). ST-GLMMs assume a linear 

relationship between covariates and the response variable, with spatial and temporal 

random effects capturing unobserved heterogeneity and spatial-temporal 

autocorrelation. Variations may include different distributions for the random effects 

and alternative specifications for the fixed effects. The general form of the ST-

GLMM can be expressed as: 

 

                         

 

Where      represents the observed response variable at location i, time j, and 

individual k; X is the design matrix for the fixed effects β; Zi and Wj are the design 

matrices for the spatial and temporal random effects, respectively; uij and vij are the 

spatial and temporal random effects, assumed to follow a multivariate normal 

distribution with mean zero and covariance matrices Σu and Σv, respectively and ϵijk 

represents the error term, assumed to be normally distributed with mean zero and 

variance σ
2
 (Diggle et al., 2013). 
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2.5.1 Method of estimation 

The likelihood function for the ST-GLMM is constructed based on the joint 

distribution of the observed data, given the fixed and random effects. The log-

likelihood function for a given set of parameters             
    can be expressed 

as: 

 

         
 

 
        

 

 
         

 

 
                   

 

Where n is the total number of observations, Y is the vector of observed responses, X 

is the design matrix for fixed effects, Σ is the combined covariance matrix for the 

random effects and the error term and Σ
−1

 denotes the inverse of Σ. 

 

The parameters β, Σu, Σv, and σ
2
 are estimated from the data using iterative estimation 

techniques such as the EM algorithm or MCMC methods. Once estimated, the fixed 

effects β are interpreted to understand the relationship between covariates and the 

response variable, while the spatial and temporal random effects provide insights into 

the spatial and temporal variability of the response variable, respectively (Diggle et 

al., 2013). 

 

2.6 Rationale for Using the Space-Time Scan Statistics Model in the Spatial-

Temporal Analysis of TB Case Notification in Northern Malawi 

Among the various spatial-temporal models discussed, the Space-Time Scan Statistics 

model developed by Kulldorff emerged as the most suitable choice for this study on 

the spatial-temporal analysis of TB case notification in Northern Malawi. Several 

advantages rendered this model particularly appropriate for achieving the research 

objectives. The model effectively identified clusters and examined the spatial-

temporal aspects of TB case notifications, addressing a significant gap in 

understanding within Northern Malawi's context. 

 

Firstly, the Space-Time Scan Statistics model is specifically designed to detect 

clusters of disease events in both space and time, making it particularly well-suited for 

identifying disease hotspots and spatial-temporal patterns of TB transmission 

(Kulldorff, 1997). Unlike models that focus solely on spatial or temporal dimensions, 
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the Space-Time Scan Statistics model considers both simultaneously. This dual 

consideration enhances the sensitivity of cluster detection, allowing for the 

identification of significant disease clusters that may be overlooked by other methods. 

For example, while the STARIMA model captures spatial and temporal dependencies 

through autoregressive and moving average components, it may not effectively isolate 

specific clusters or hotspots as the Space-Time Scan Statistics model does. 

 

Moreover, the Space-Time Scan Statistics model offers unparalleled flexibility in 

defining the size, shape, and duration of potential clusters. This adaptability allows 

researchers to tailor the analysis to the specific characteristics of the data and the 

epidemiological context (Kulldorff, 1997). Such flexibility is particularly crucial in 

the context of TB transmission, where clusters can vary significantly in terms of their 

geographic spread and duration. In contrast, models like the ST-GLMMs, while 

robust in incorporating random effects to account for spatial and temporal variability, 

do not inherently provide the same level of flexibility in defining and detecting 

clusters. 

 

The Space-Time Scan Statistics model provides rigorous statistical measures of 

significance for identified clusters. This capability allows researchers to assess the 

likelihood that observed clusters are due to random variation rather than actual 

patterns of disease transmission (Kulldorff, 1997). The statistical rigor inherent in the 

model enhances the reliability of cluster detection results, providing confidence in the 

interpretation of identified clusters as true disease hotspots. While Spatiotemporal 

point process models can characterize variations in disease occurrence through 

intensity functions, they may not offer the same level of statistical testing for cluster 

significance, which is critical for public health decision-making. 

 

Furthermore, the implementation of the Space-Time Scan Statistics model through 

software tools such as SaTScan facilitates efficient and user-friendly analysis of large 

spatial-temporal datasets. This practical advantage streamlines the process of cluster 

detection and interpretation, making it accessible for researchers and public health 

practitioners (Kulldorff, 1997). In contrast, the STARIMA model and ST-GLMMs 

often require more complex statistical software and expertise, which can be a barrier 

for routine public health surveillance and intervention planning. 
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The application of the Space-Time Scan Statistics model addresses significant gaps in 

the current understanding of TB transmission dynamics in Northern Malawi. While 

previous studies have utilized various spatial-temporal models to analyse disease 

patterns, many have not effectively combined spatial and temporal dimensions in a 

way that identifies specific clusters and hotspots. The flexibility and statistical rigor of 

the Space-Time Scan Statistics model enable a more nuanced analysis of TB case 

notifications, revealing patterns and trends that other models may miss. 

 

When compared to Spatiotemporal point process models, STARIMA, and ST-

GLMMs, the Space-Time Scan Statistics model stands out for several reasons. 

Spatiotemporal point process models, for instance, focus on the intensity functions of 

point patterns across space and time, which is useful for characterizing disease 

occurrence but less effective for explicit cluster detection (Diggle, 2013). The 

STARIMA model, while incorporating spatial and temporal dependencies, is 

primarily geared towards forecasting rather than identifying specific clusters (Cressie 

& Wikle, 2015). ST-GLMMs offer robust modelling of spatial and temporal 

variability through random effects but do not inherently focus on cluster detection 

(Diggle et al., 2013). 

 

In summary, the Space-Time Scan Statistics model provides a robust, flexible, and 

statistically rigorous framework for analysing the spatial-temporal dynamics of TB 

case notifications in Northern Malawi. Its ability to detect clusters of disease events in 

both space and time, combined with its flexibility in defining clusters and rigorous 

statistical testing, made it an ideal choice for this study. The model's implementation 

through user-friendly software further enhanced its practical applicability, facilitating 

efficient analysis and interpretation. 

 

2.7 Cases where spatial-temporal methods have been applied to data. 

Various studies have demonstrated the utility of spatial-temporal methods in different 

contexts. Smith et al. (2018) applied spatial cluster detection methods to identify 

hotspots of dengue fever transmission in urban areas of Brazil. Their study effectively 

showcased the use of spatial methods in pinpointing areas at elevated risk of dengue 

outbreaks, thereby informing targeted vector control interventions. By utilizing a 

purely spatial cluster detection method, Smith and colleagues were able to identify 



 

20 

 

areas with high incidence rates, providing actionable insights for public health 

officials. This approach was instrumental in deploying targeted vector control 

measures, thus reducing the incidence of dengue in identified hotspots. 

 

Similarly, Chen et al. (2020) utilized time-series analysis to examine temporal trends 

in cancer incidence rates in a population-based cancer registry dataset. Their study 

revealed significant temporal variations in cancer incidence over time, highlighting 

the importance of ongoing surveillance and monitoring efforts. By applying advanced 

time-series methods, Chen and colleagues detected subtle trends and patterns in 

cancer incidence that traditional methods might have overlooked. Their findings 

underscored the necessity for continuous monitoring and early intervention strategies 

to manage and mitigate cancer risks effectively. 

 

Furthermore, Zhang et al. (2019) employed Poisson regression models to assess the 

association between road traffic accidents and various contributing factors, such as 

road characteristics, weather conditions, and driver behaviour. Their study identified 

significant predictors of road traffic accidents and provided valuable insights for road 

safety planning and interventions. Using a combination of spatial and temporal data, 

Zhang and colleagues were able to pinpoint high-risk areas and times for road traffic 

accidents. This information proved crucial for informing more effective preventive 

measures and improving road safety infrastructure. 

 

In addition, Lee et al. (2017) conducted a spatiotemporal analysis of influenza spread 

in South Korea using STARIMA models. They identified significant clusters and 

temporal trends of influenza cases, providing insights into the effectiveness of 

vaccination campaigns and other control measures. Lee and colleagues' analysis 

highlighted the importance of considering both spatial and temporal dimensions in 

disease surveillance and control, thereby enhancing the ability to respond to and 

manage influenza outbreaks more effectively. 

 

Moreover, Jones et al. (2021) applied ST-GLMMs to examine the spread of COVID-

19 in urban and rural areas of the United States. Their study revealed significant 

differences in transmission dynamics between urban and rural settings, emphasizing 

the need for tailored public health strategies. By using ST-GLMMs, Jones and 



 

21 

 

colleagues gained a nuanced understanding of how various factors influenced 

COVID-19 spread over time and across different regions. Their findings informed 

public health policies, helping to design more targeted and effective intervention 

strategies. 

 

Furthermore, Garcia et al. (2022) used space-time scan statistics to analyse the spread 

of the Zika virus in Central America. Their study identified spatiotemporal clusters of 

Zika virus transmission, which provided critical information for public health 

authorities to implement targeted control measures. Garcia and colleagues’ 

application of space-time scan statistics allowed for the detection of high-risk areas 

and periods, facilitating more efficient allocation of resources to combat the outbreak. 

 

Additionally, Kim et al. (2023) applied Bayesian hierarchical models to study the 

spatiotemporal dynamics of air pollution and its health impacts in urban centers across 

East Asia. Their research revealed significant spatial and temporal variations in air 

pollution levels and associated health outcomes. By utilizing Bayesian hierarchical 

models, Kim and colleagues were able to account for complex dependencies and 

uncertainties in their data, providing robust estimates of pollution impacts. Their 

findings have significant implications for urban planning and public health policies 

aimed at reducing air pollution and mitigating its adverse health effects. 

 

Lastly, Ahmed et al. (2023) utilized spatial-temporal kernel density estimation to 

analyse the distribution and evolution of cholera outbreaks in Sub-Saharan Africa. 

Their study demonstrated the effectiveness of this method in identifying emerging 

hotspots and tracking the spread of cholera over time. Ahmed and colleagues’ work 

highlighted the importance of continuous spatial-temporal monitoring in managing 

infectious disease outbreaks and improving public health responses. 

 

By applying similar spatial-temporal methods to TB data in the northern region of 

Malawi, this thesis aimed to advance the understanding of the spatial-temporal 

analysis of TB and inform evidence-based TB control strategies in the region. Using 

advanced biostatistical models like Space-Time Scan Statistics, this study provides 

detailed insights into the spatial and temporal dynamics of TB, enabling more targeted 

and effective public health interventions. 
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CHAPTER 3 

 

 METHODOLOGY 

 

3.1 Introduction 

This chapter focuses on the methodology adopted to determine the spatial and spatial-

temporal trends of TB case notifications in northern Malawi. It depicts the data 

sources and collection procedures, the data analysis package, and the spatial-temporal 

models utilized. 

 

3.2. Data Collection and Analysis 

3.2.1 Data Sources and Collection Procedures 

This study investigated the space-time dynamics of TB clusters in Northern Malawi 

from 2013 to 2020, utilizing data collected from secondary sources, primarily the 

hospital records database of all health facilities in the region. The study was 

conducted across 61 health centres situated in six districts within the northern region. 

Mzimba district, being the largest, accounted for 25 health facilities, followed by 

Karonga (10), Chitipa (8), Nkhatabay (8), Rumphi (7), and Likoma (1). However, 

upon analysis, only 59 health facilities were deemed to have significant TB case 

records worthy of study. 

 

The TB data collection process followed a structured approach coordinated by District 

TB Officers, involving the maintenance of three types of registers at the district level: 

a chronic cough register, a laboratory TB register, and a TB treatment register (World 

Health Organization, 2020). These registers captured details of patients undergoing 

TB diagnosis and treatment, including sputum smear results and treatment initiation. 

The collected data were collated quarterly by District TB Officers, forwarded to 

Regional TB Officers, and then compiled into regional summaries transmitted to the 

Central Unit of the National TB Program (NTP). For this study, data were obtained 
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from the Central Unit level, encompassing all TB data from the sixty-one health 

facilities in the northern region (Nyirenda, 2006). 

 

Population data for the study area were derived from the Malawi Population and 

Household Census (MPHC) reports of 2008 and 2018. Accounting for the decadal 

nature of MPHCs, an annual population growth rate of 2.7% was applied to estimate 

the annual population size per district (Souza et al., 2007). Additionally, SaTScan 

software was utilized to impute population data at one or more specific 'census times' 

and perform linear interpolation based on population sizes at preceding and 

succeeding census times. This approach enabled the estimation of population sizes for 

specific locations and time periods, crucial for spatial-temporal analysis of TB 

clusters (Kulldorff, 1997). 

 

 

Figure 1: Map of Malawi 
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3.2.2 Poisson Model for Spatial-Temporal Cluster Detection in Kulldorff's 

SaTScan software 

The SaTScan software package was instrumental in conducting spatial-temporal 

cluster analysis of TB case notification. Utilizing the Poisson probability model 

within SaTScan, the study identified clusters of elevated TB incidence rates across 

different spatial and temporal dimensions of events, within specific spatial and 

temporal windows. 

 

The Poisson probability model within SaTScan is utilized for detecting spatial-

temporal clusters by assessing the count of disease events within specific spatial and 

temporal windows. This model assumes that the number of cases in each area follows 

a Poisson distribution, which is appropriate for rare events like TB notifications 

(Kulldorff, 1997). 

 

The likelihood function for the Poisson model is defined as follows: 

 

          

      
          

   
 

 

Where      is the likelihood of cluster  ,    is the observed number of cases in 

location    within the cluster,    is the expected number of cases in location  , which is 

calculated based on the population at risk,    is the population or time at risk in 

location  . 

 

The expected number of cases    is determined under the null hypothesis of no 

cluster, assuming a homogeneous Poisson process: 

 

   
   
 
   

   
 
   

      

 

Where   is the total number of spatial and temporal units considered,    
 
    is the 

total number of observed cases across all units and    
 
    is the total population or 

time at risk across all units. 
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To identify clusters, SaTScan scans the study area using a cylindrical window with a 

circular geographic base and a height corresponding to time. The window is moved 

systematically over the study region, considering all possible geographic locations 

and sizes, as well as different temporal extents. For each window position and size, 

the likelihood ratio is calculated by comparing the likelihood of observing the given 

number of cases within the window to the likelihood under the null hypothesis 

(Kulldorff, 1997). 

 

The likelihood ratio LR for a specific window was given by: 

 

   
    

       
 

 

Where         is the likelihood under the null hypothesis, calculated as: 

 

             
( ̅  )

       ̅  

   
, where  ̅ is the overall expected rate of cases. 

 

Clusters were identified as regions with the maximum likelihood ratios, and the 

statistical significance of these clusters was assessed using Monte Carlo simulations. 

This process involved generating many random datasets under the null hypothesis and 

comparing the observed likelihood ratios to the distribution of likelihood ratios from 

the simulated datasets.  

 

3.2.3 Ethical considerations 

The collection and use of secondary data for this study adhered to ethical guidelines 

and regulations governing research involving human subjects. Before conducting the 

study, ethical approval and clearance were obtained from the Ministry of Health and 

the National Control TB program. This ensured that the study adhered to the 

recommended ethical parameters and safeguarded the rights and well-being of 

individuals involved in the data collection process. As the study utilized secondary 

data obtained from the Central TB Unit, the data had been collected under appropriate 

ethical guidelines. To ensure compliance and ethical integrity, the study sought 

approval from the original data generators before utilizing and publishing the data. 
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This step ensured that the study maintained ethical standards throughout its research 

process, demonstrating respect for the rights and confidentiality of individuals whose 

information was included in the dataset. 

 

3.3 Statistical Methods for Analysing Spatial-Temporal Dynamics of TB Case 

Notification Data 

3.3.1 Spatial Model: Spatial scan statistic 

The spatial model used in this study was the spatial scan statistic, a powerful tool for 

detecting spatial clusters of disease cases. This model allows for the identification of 

areas with significantly higher or lower TB case notification rates compared to the 

surrounding areas. The spatial scan statistic works by scanning a window across the 

study area and comparing the observed number of cases within the window to the 

expected number of cases under the null hypothesis of spatial randomness. The 

Poisson model is suitable for this analysis because it assumes that the number of cases 

follows a Poisson distribution, which is appropriate for rare events such as TB 

notifications (Kulldorff, 1997). 

 

The likelihood function for the spatial scan statistic was given by: 

 

  
    

  
 

 

Where   is the likelihood ratio test statistic,      is the likelihood of observing the 

data within the potential cluster A,    is the likelihood of observing the data under the 

null hypothesis. 

 

The potential cluster A was defined by a circular window that varied in size and 

location across the study area which is the Northern Region of Malawi. The maximum 

likelihood ratio across all possible cluster configurations was calculated, and its 

significance was assessed using Monte Carlo hypothesis testing. Using the Poisson 

model, the likelihood      for the cluster   was given by: 

 

          (
      

          

   
) 
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Where    is the expected number of cases at location i, calculated based on the 

population at risk,    is the population or time at risk in location i,    is the observed 

number of cases at location i. 

 

The expected number of cases    under the null hypothesis was: 

 

   
   
 
   

   
 
   

      

 

Where   is the total number of spatial and temporal units considered,    
 
    is the 

total number of observed cases across all units and    
 
    is the total population or 

time at risk across all units. 

 

The likelihood ratio LR for a specific window was given by: 

 

   
    

       
 

 

Where         is the likelihood under the null hypothesis, calculated as: 

 

             
( ̅  )

       ̅  

   
, where  ̅ is the overall expected rate of cases. 

 

Statistical tests determined the significance of estimated parameters. For covariates, p-

values indicated whether there were significant associations with the outcome 

variable. 

 

3.3.2 Spatial – Temporal Model: Space-time scan statistic 

The spatial-temporal model used in this study was the space-time scan statistic, an 

extension of the spatial scan statistic that incorporates temporal dimensions. The 

space-time scan statistic allows for the detection of clusters of disease cases that are 

both spatially and temporally concentrated. This model evaluates the observed 
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number of cases within a space-time window against the expected number under the 

null hypothesis of spatial-temporal randomness (Kulldorff, 1997). 

The model: 

        
                      

                      
 

 

Where Λ (s, t) represents the likelihood ratio for the space-time window (s, t), A (s, t) 

denotes the space-time window, Y (si, t) is the observed number of cases in the 

window, E (si t) is the expected number of cases under the null hypothesis. 

 

The space-time scan statistic was estimated using likelihood ratio tests, identical to 

the spatial scan statistic. The maximum likelihood ratio across all possible space-time 

windows was determined: 

 

The Likelihood function for the space-time scan statistic was given by: 

  
      

  
 

 

Where Λ is the likelihood ratio test statistic, L (S, T) is the likelihood of observing the 

data within the space-time window S×T, L0 is the likelihood of observing the data 

under the null hypothesis. 

 

The space-time window S×T defined both spatial and temporal dimensions and varied 

in size and location across the Health Centres in the Northern Region of Malawi from 

2013 to 2020. The maximum likelihood ratio across all possible space-time windows 

was then calculated, and its significance was assessed using permutation tests. 

 

Using the Poisson model, the likelihood L (S, T) within the space-time window S×T 

was expressed as: 

 

                 (
       

            

    
)  
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Where     is the expected number of cases at location i and time t, calculated based on 

the population at risk,    is the population or time at risk in location i,     is the 

observed number of cases at location i and t. 

The expected number of cases     under the null hypothesis was: 

   
     

 
   

 
   

    
 
   

 
   

      

 

Where   is the total number of spatial and temporal units considered, T is the total 

number of temporal units considered,       
 
   

 
    is the total number of observed 

cases across all spatial and temporal units and     
 
   

 
    is the total population or 

time at risk across all spatial and temporal units. 

 

The likelihood ratio LR for a specific space-time window was given by: 

 

   
      

       
 

 

Where         is the likelihood under the null hypothesis, calculated as: 

 

                 
( ̅  )

        ̅  

    
, where  ̅ is the overall expected rate of cases. 

 

The expected number of cases    was estimated using population at risk and disease 

rates for each Health Centre and period. The space-time window was moved 

systematically across the study area and time-period, varying in size and location, to 

identify the space-time configuration that maximizes the likelihood ratio test statistic. 

 

Statistical tests assessed the significance of estimated parameters. Covariate 

coefficients indicated the influence of predictors on the outcome variable over time 

and space, while space-time interaction terms captured how this influence varied 

across different locations and time periods. Significant covariate coefficients revealed 

factors associated with changes in the outcome variable over time and space. Space-

time interaction terms indicated whether the effects of covariates vary across different 
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spatial-temporal contexts, highlighting areas and periods with distinct patterns of 

disease incidence. 
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CHAPTER 4 

 

 RESEARCH RESULTS 

4.1 Introduction 

This chapter presents key research findings, and interpretation of results gathered 

from the study. Thus, the chapter presents data through tables, figures, and uses 

statistical models to analyse data where among other findings others focuses on 

demographic characteristics, distribution of TB cases, cluster coverage, spatial and 

temporal distribution of cases, TB hotspots and clusters in Northern Malawi.  

 

4.2 Results of the study 

4.2.1 District TB case notification 

 Key findings depict a total of 12,324 TB case counts were recorded, the highest 

recorded year being 2019 with 2098 cases against the lowest in 2020 at 1099 cases. 

According to study findings, Likoma District recorded the lowest TB case count at 38, 

Mzimba North district had the largest number of reported cases at 5447. Looking at 

the case distribution against the population proportion, Rumphi district reported the 

highest number of cases (41%), followed by Mzimba North (26%). 

 

 

Figure 2: District TB infection distribution 2013 – 2020. 
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4.2.2 Gender and age distribution of TB Cases  

 

 

Figure 3: Gender and age group distributions among reported cases. 

 

The study outcomes point out that there were more males infected by TB within the 

research period. A total of 7524 cases against 4800 cases for males and females were 

recorded representing a 61% and 39% respectively. 

 

The study breaks down reported TB cases into three age groups: 0-24 representing 

children and adolescents, 25-44 representing youth and young adults, and 45+ 

representing middle-aged and elderly individuals. The findings indicate that 46% of 

reported cases were from the youth and young adults, followed by the middle-aged 

and elderly, with adolescents and children accounting for only 21%. These highlights 

varying levels of exposure and prevalence rates.  

 

4.2.3 Trend of TB Infection Rates 

 

 

Figure 4: TB infection Rate trends (2013-2020) 
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The overall trend in TB infection rates from 2013 to 2020 showed some fluctuations 

but tended to remain relatively stable. There was a slight decrease in the overall 

infection rate from 2013 to 2020. Some districts showcased a decreasing trend over 

the years, while others showing fluctuations or increases. Likoma consistently showed 

higher infection rates compared to other districts, especially in 2017 and 2020. 

Rumphi experienced a significant spike in 2014, followed by a gradual decrease in 

infection rates over the subsequent years. Chitipa, Karonga, Mzimba North, Mzimba 

South, and Nkhatabay generally had lower infection rates compared to Likoma and 

Rumphi. 

 

The data also indicated that there were fluctuations in TB infection rates from year to 

year within each district. Some years showed increases in infection rates, while others 

show decreases. Likoma experienced a notable increase in infection rates in 2017, 

followed by a decrease in 2018 and then another increase in 2020 and Rumphi saw a 

sharp increase in 2014, followed by a gradual decrease in subsequent years. Some 

districts, such as Chitipa, Karonga, Mzimba North, Mzimba South, and Nkhatabay, 

indicated relatively stable infection rates throughout the years, with minor 

fluctuations. 

 

4.2.4 Seasonal distribution of TB Cases 

 

 

Figure 5: Monthly distributions of TB cases. 

 

Looking at the overall data from 2013 to 2020, August emerges as the month with the 

highest recorded number of TB cases in the six districts, with an average of 1660 
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cases, a standard deviation of 4.26, and a variance of 20.76. The general trend shows a 

sharp decline of cases in the month of September, through October, however, the 

lowest registering month is February. However, studying the variations in cases 

across the months of a disease goes beyond the number of cases within a month.  

 

The quarterly variation of the Tb diseases by considering the four quarters within each 

year was analysed. The third quarter (July, August, and September) registers the most 

cases with the second quarter having the least.  

 

4.2.5 TB Hotspot and Cluster identification  

Seven significant TB clusters were identified using spatial and space-time Model by 

executing spatial variation in temporal trends analysis. A cluster was considered 

statistically significant when its test statistic is greater than the Gumbel Critical 

Values (GCV) and Standard Monte Carlo Critical Values (SMCCV). Thus at 0.0001 

significance level, a cluster was considered if its critical value was greater than 

5.472276 GCV and 4.874990 SMCCV.  A population size of 1,091,311 averaged over 

the 8-year period was considered from which a total number of 12, 324 cases were 

detected. The study detected a mean average of annual cases of 1.4 per 100,000 across 

the district. The study further analysed the cluster size and spread. The study utilized 

the Discrete Poisson probability model in SatScan, which uses population, GPS 

coordinates and TB cases as input to develop spatial and space-time clusters. To 

replicate the clusters and hotspots, a retrospective Space-Time analysis model for 

clusters with high rates using the Space-Time Permutation model was used. The 7 

clusters identified across the northern region are summarized below and the outputs 

are showcased in appendix 2. 
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Figure 6: Spatial Map indicating TB Case Notification Clusters in the Northern Region of 

Malawi 

 

The cluster radius was used to define the size of a geographical area around a central 

point within which the occurrence of TB case notification was considered significant. 

The radius was determined based on the density of the population at risk, and the 

spatial distribution of cases. The table below further highlights key parameters 

analysed in the study such as the radius of clusters, population size at risk of infection, 

expected TB cases against actual cases reported and general time trends over the 

period of 8 years.  
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Table 1: Retrospective Spatial- Temporal analysis model estimates 

Cluster 
Radius 

(Km) 
Population  

Number 

of cases 

Expected 

cases 

Annual 

cases/100000 

Relative 

risk 

Time 

trend 

P-

value 

Cluster 

1 
130 553,221 756 645.26 1.7 1.18 15.14 0.001 

Cluster 

2 
120 48,339 46 5.58 11.6 8.28 12.9 0.001 

Cluster 

3 
68.29 236,764 1073 277.78 5.5 4.14 -15.28 0.001 

Cluster 

4 
48.29 509,863 4861 5723.3 1.2 0.75 -5.24 0.001 

Cluster 

5 
33.93 209,863 892 765.3 1.17 5.41 -4.98 

6.30E-

10 

Cluster 

6 
18 560,904 130 6.72 1.94 1.45 -6.3 

  

Cluster 

7 
17 67,986 879 72.52 1.2 2.81 -3.8 0.726 

              -1.08   

         

 

4.2.5.1 Cluster size and location. 

The study applied the spatial-temporal models to determine the size, jurisdiction, and 

extent of each cluster to understand their composition and distribution. This analysis 

was crucial for identifying patterns and assessing the significance of each cluster. In 

terms of the number of health centres within each cluster, the study found that 

Clusters 1, 6, and 7 have one health centre each, compared to clusters 2, 3, 4, and 5, 

which consist of more than one health centre or hospitals.  
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Figure 7: Cluster size and population coverage. 

 

The cluster hotspot with the largest radius is cluster 1 which is surrounded by an 

average of 533,221-population size. Cluster 7 has the lowest radius of 17 Km, 

surrounding a population of 67,989 and encompasses areas surrounding David 

Gordon Memorial Hospital in Rumphi District.  

 

4.2.5.2 TB clusters cases and expectations  

Using the Spatial – Temporal Model, the study established the number of cases per 

clusters, expected cases and annual cases per 100,000 to analyse the extent to which 

each cluster has registered Tb cases and project likelihood of future infections. The 

highest number of cases was registered in cluster 4 at 4861 cases, while the lowest 

number of cases was registered in cluster 6 at 1309. However, the extent of TB case 

infestation can’t be looked at outside the context of population and time. Therefore, 

the variable annual cases per 100,000 population size was introduced. This variable 

incorporates the space and time factor to determine the significance of infection per 

each cluster. Numerical ranking of the clusters depicts that the cluster with more 

infection per 100,000 population over a one-year period was cluster 2 which 

registered 11.6 cases. This means that despite cluster 4 having the largest number of 

infections over the 8year period, cluster 2 holds the highest proportional potential risk. 
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Figure 8: Number of cases per cluster. 

 

4.2.6 TB Cluster relative risk (RR) 

The Relative Risk (RR) of TB cases in the study measured the likelihood of the 

occurrence of a TB case after exposure. The study analysed the relative risk within the 

7 clusters by using the spatial variation in temporal trends and probability model 

using the discrete Poisson model. 

 

As a measure of effect size, an RR value is generally considered clinically significant 

if it is less than 0.50 or more than 2.00; that is, the risk is considered halved, or more 

than doubled. However, RR values that are closer to 1.00 can be considered clinically 

significant if the event is serious of if it is important to public health. An RR less than 

1.00 means that the risk is lower in the exposed sample. RR that is greater than 1.00 

means the risk is increased in the exposed sample.  
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Figure 9: Relative Risks in clusters. 

 

In Figure 9, the relative risk (RR) of the 7 clusters over an 8-year period compared to 

the general population is depicted. Following data smoothing, cluster 2 emerged as an 

outlier. All clusters except for cluster 4 indicated a RR > 1 which indicated high 

likelihood of TB occurrence after exposure.  Cluster 1 shows a RR of 1.18, marginally 

higher than 1.00. While this indicates a heightened risk among the exposed sample, 

the magnitude of this elevation is relatively minor, suggesting limited practical 

significance.  

 

4.2.7. Temporal trends of TB Infections  
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By deploying a temporal analysis using the Kullorf’s SatScan and temporal time 

models, the study analysed the time trend of TB cases within the identified clusters. 

The aim was to determine with TB cases were either declining or increasing within 

the 8-year period. The general trend of TB notification rates in the region appeared to 

decrease by 1.08% in per 100,000 people, where an annual average rate of 84.11 per 

100,000 people of infections was registered.  
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CHAPTER 5 

 

DISCUSSION OF RESULTS 

 

5.1 Introduction  

The study aimed to utilize advanced biostatistical methods to investigate the spatial 

distribution of TB, with a particular focus on identifying spatial-temporal clusters 

over an 8-year period in Northern Malawi. This chapter provides a comprehensive 

discussion of the results obtained from the analysis. 

 

5.2 Gender and Age distribution of Tb Cases  

According to the World Health Organization annual report, globally it is known that 

beyond the age of 15 there are more men reported with TB than women. The study 

outcomes point out that there were more males infected by TB within the research 

period a total of 7524 cases against 4800 cases for males and females were recorded 

representing a 61% and 39% respectively (p>0.001). However, secondary data from 

NTP reports shows that National records indicate a 1:1 men and women ratio among 

the TB cases notification, with the northern region indicating a 1:3 ratio among 

women and men, thus conforming to this study’s findings. Between the ages of 0 and 

24 there are more females with positive TB cases than males, the distribution being 

equal in the ages of 25 to 34 and more men than women after the age of 34.  

 

The study results indicate that 46% of cases reported were from the youth and young 

adults, seconded by the middle aged and elderly, with the adolescents and children 

reporting only 21%. This points out to the levels of exposure prevalence rate and how 

age correlates with TB infection in the study area.  

 

 

 



 

42 

 

5.3 Spatial and Spatial-Temporal clusters of Tb in the Northern Region of 

Malawi 

Seven clusters have been identified and ranked items of their severity accounting to 

the results above. Cluster 1 and 2 encompasses Mzuzu City where two key health 

Centres reside namely Mzuzu Central Hospital and Mzuzu Health Centre. These 

happens to be the biggest cluster in terms of coverage and radius; mainly because of 

the population central hospitals serve and the spatial distribution of cases. Cluster 3 

consists of health facilities around Rumphi district while, cluster 4 consists of health 

facilities around Mzimba South, and clusters 5 have health facilities in around 

Nkhatabay District Hospital. Cluster 6 and 7 each have rural health facilities of 

Chitimba and David Gordon memorial hospital as key TB hotspots, these areas have 

been singled out because they hold a higher relatively risk (RR) of TB infection to the 

public than other facilities in the northern region. Nyirenda (2006) conducted an 

epidemiology study of TB cases in Malawi and found similar results as far as the 

concentration of cases, however, this study has gone into details of the actual radius of 

each hotspot.   

 

The study points out a very high risk that exists in case of an outbreak in the Mzuzu 

city, with a 533,210 population at risk. Populations that reside around major cities and 

major public hospitals are at a larger risk compared to populations that are away 

(Jones et al., 2020). The same is noticed in major semi-urban areas such as Bwengu, 

Bolero, Embangweni and Chintheche areas, thus areas that have more economic 

activities happening pose a higher risk for TB case infection. A correlation study 

however, between economic zones and TB case count needs to explore further this 

relationship.  

 

The finding of this study resonates to what Mesay et al. (2015) found in Southern 

Ethiopia where the highest potential risks was found to be in a cluster with the lowest 

number of infections. This means the extent of infection in health centres around 

cluster 2 is the highest. On the other hand, cluster 5 remains the lowest probable 

potential annual risk at only with 1.17 cases. On the other hand, the annual case per 

100,000 against the 8-year period shows a general decline of the cases at 1.08% every 

year in all clusters. This shows that despite TB being a disease of national concern, 

there has been some strides in reducing its rate of infection to the public.  
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In general terms, despite Cluster 1 having a greater exposure rate to the public in 

relation to its radius coverage, its risk factor remains lower than other clusters which 

means the likelihood of the occurrence of a TB case after exposure is manageable. 

Nonetheless, the cluster still poses a health threat in comparison with other health 

facilities in the North. Clusters 2 and 3 however, indicate the highest relative risk for 

the TB exposure. This entails that the likelihood of occurrence of a TB case after 

exposure in these areas is very high. An outbreak of TB in the area will more likely 

expose the general population to the infection. Therefore, areas that have high RR 

need to be managed abruptly in case of outbreaks. 

 

Other factors that contribute to the formation of cluster is poverty, overcrowding, and 

inadequate access to healthcare (Lönnroth. et al, 2015).  These socioeconomic factors 

create an environment that facilitates the transmission and progression of TB. Poor 

living conditions, limited access to clean water, malnutrition, and lack of proper 

sanitation increase the risk of TB infection. It is therefore apparent that the 7 clusters 

have formed around similar condition, especially within the sub-urban areas around 

major trading centers. The cluster formation can possibly also be explained by the 

rapid urbanization in Mzuzu, Mzimba and other cities in the north, which usually 

leads to overcrowding, informal settlements, and poor living conditions, which are 

conducive to TB transmission. Urban areas often have higher TB burdens and 

hotspots due to the concentration of vulnerable populations, such as migrant workers, 

slum dwellers, and individuals with limited access to healthcare services (Lawn. et al, 

2011). However, there is need for further study to concretely attribute the causative 

agents of cluster formation in the study area.  

 

5.4 Tb Spatial Pattern and Distribution   

The geospatial analysis in this study identified 7 spatial clusters, which are areas with 

a higher concentration of TB cases compared to surrounding areas. These clusters 

indicate localized transmission hotspots and areas with common risk factors. By 

identifying these clusters, public health officials can focus interventions on high-risk 

areas to control the spread of TB.  

 

These clusters are showing disparities in TB distribution between urban and rural 

areas. It has been found that urban areas (Mzuzu, Mzimba, Bwengu etc) have higher 
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TB burdens. Despite the presence of the high risks in urban areas, some rural areas 

also show some high risks of TB hotspots. According to the WHO, high poverty 

levels, limited access to healthcare service delivery and other socio-economic 

activities such as agriculture practices increase the risk and exposure to TB (WHO, 

2020). The study however gives aerial view of the disparities in terms of distribution 

of TB, which is important for health practitioners to properly target their 

interventions. But needs further study to establish the exact disparities that exist 

between urban and rural areas.  

The spatial pattern from this study unfortunately doesn’t explain critical relationship 

that exists between TB distributions and environmental factors which are critical in 

explaining the occurrences of TB Clusters. Certain environmental conditions, such as 

poor air quality, indoor pollution, or specific climate patterns, may contribute to TB 

transmission or affect the vulnerability of populations in specific geographic areas 

(WHO, 2021). It is important that further studies explore these environmental 

conditions on the identified clusters.  

 

Geospatial analysis of TB distributions provides valuable insights for public health 

planning, resource allocation, and targeted interventions. It is apparent that the study 

has identified high-risk areas and helped to understand the underlying drivers of TB 

transmission. It is expected that this data will be used to optimize strategies for 

prevention, diagnosis, and treatment for cases within the northern region in Malawi.  

 

5.5 Detection of Tb Spatial – Temporal trends  

By applying a temporal analysis using Kullorf’s SatScan and temporal time models, 

this study identified time trends of TB cases within the identified clusters. The 

objective was to determine whether TB cases were exhibiting a declining or 

increasing trend over the 8-year period under investigation. The findings reveal a 

notable trend in TB notification rates within the region, indicating a decrease of 

1.08% per 100,000 people over the study period. This decline aligns with global 

efforts aimed at TB control and prevention (WHO, 2020). However, despite this 

overall decrease, an annual average rate of 84.11 TB cases per 100,000 people was 

observed, suggesting that TB remains a significant public health concern in the region 

(CDC, 2020).  
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Nonetheless, the study found that despite having a general decrease in trend, cluster 1 

and cluster 2 has an increment rate of 15.14% and 12.90% per 100,000 people. The 

increment can be attributed to the increase of urbanization within population 

surrounding health facilities in cluster 1 but also increase in TB notification over the 

past years. 

 

The temporal analysis employed in this study provides valuable insights into the 

dynamic nature of TB transmission and can inform the development of effective 

strategies for TB prevention and control at both regional and global levels (Houben & 

Dodd, 2016). Overall, the observed decline in TB notification rates is encouraging, 

yet sustained efforts are warranted to achieve lasting reductions in TB burden and 

move closer to the goal of TB elimination (Houben et al., 2016).  
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Introduction 

This chapter presents the conclusion of the study and presents a comprehensive 

overview of the findings and their implications. Through the utilization of advanced 

biostatistical methods, the study investigated the spatial distribution of TB over an 8-

year period, shedding light on the presence of spatial-temporal clusters and trends. It 

also dwells on the recommendations deduced from the findings and acknowledge the 

limitations inherent in the study. 

 

6.2 Conclusions 

This study identified temporal trends and spatial distribution of TB cases in the 

northern region of Malawi using spatial and spatial-temporal data analysis. A total of 

7 clusters were identified within the region. In general, the spatial trend of TB cluster 

follows a pattern whereby areas with the highest population size and located within a 

high economic area have the highest risk to the public. These findings suggest that 

areas with a higher population density, likely accompanied by increased social 

interactions and potential exposure to TB transmission, contribute to the formation of 

clusters. Moreover, the presence of economic opportunities in these areas could attract 

a larger population, resulting in higher TB transmission rates. In this case it was 

observed clusters in the northern Malawi have formed around Central Districts, 

District Hospitals, and major rural hospitals. Concurrently, Clusters form around the 

city, townships, trading centers, urban centers and semi-urban centers lay within TB 

cluster and hotspots. These include Mzuzu City, Chintheche, Bolero, Bwengu, 

Embangweni, Jenda, Chitimba, among others. 

 

The analysis of demographic parameters, including sex and age distribution, revealed 

important insights regarding the susceptibility to TB infection. The findings indicated 
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that males have a higher risk of contracting TB compared to females. This observation 

could be attributed to various factors, such as differences in occupational exposure, 

lifestyle behaviours, or biological factors that predispose males to a higher 

vulnerability. 

 

Furthermore, the study highlighted that individuals between the ages of 24 and 35 are 

more susceptible to TB infection. This age group encompasses young adults, who 

often reside in urban areas such as cities and townships. The demographic 

composition of these urban settings, characterized by a higher concentration of young 

adults, can contribute to increased TB transmission. Factors such as migration, 

overcrowding, poverty, and a higher prevalence of HIV in urban areas further 

compound the risk of TB prevalence. The presence of these contributing factors in 

urban areas, including higher population density, greater mobility, and increased 

social interactions, can facilitate the transmission of TB among susceptible 

individuals.  

 

By studying time trends, the study concludes that there is a general decline of TB 

Cases infection within the region at 1.08% annual decrease. Clusters depicting a 

decrease in infection rate clearly depicts that huge strides to control the disease are 

being taken, however, TB still poses a high risk to the population around clustered 

health facilities and the public. Although there has been a significant reduction of the 

general incidence, other studies suggests that there has been increase abandonment of 

TB medication, which has resulted in recurrent infections.  

 

Similar studies have identified several potential causes for the emergence of clusters 

in TB prevalence. These factors include increased poverty levels, high rates of urban 

migration, poor access to health services, social determinants, and seasonal effects. 

However, it is important to note that further research is necessary to gain a deeper 

understanding of these determinants and their specific impact on the formation of TB 

clusters. All in all, for policymakers to make informed decisions regarding TB 

prevention and control, it is imperative to prioritize and improve the quality of data 

collection within health facilities. The challenges associated with data collection pose 

significant obstacles for researchers, as they hinder the capturing of key variables 

necessary for a better understanding of TB hotspots and clusters.  
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6.3 Recommendations  

 The study concurs with other studies that TB clusters and Hotspots usually 

follow a pattern of being around major economic zones, central hospitals, and 

urban health centers, with the highest driving factors being population density, 

size, high poverty levels, high urban migration, and social behaviours. In the 

Northern region, these areas have been classified into 7 clusters. Therefore, 

TB programs need to target populations around these economic zones and 

central hospitals to reduce the risk of increasing the spread of the infection.   

 

 Containment of TB outbreaks will have to concentrate within the 7 clusters 

identified in this study and then spillover to other areas. However, within the 7 

clusters cluster 1, 3 and 4 offers the highest risk to the public, thus, resource 

allocation and targeted interventions within health facilities that fall within 

these specific clusters is urged.  

 

 The finding that TB cases are highest among males than females at a ratio of 

1:3 in the northern region, highlights the need for targeted interventions that 

address the specific risk factors and vulnerabilities faced by each gender. By 

recognizing the gender disparity in TB prevalence, policy holders and 

decision-makers can tailor their interventions to maximize impact and 

effectively address the unique challenges faced by males and females.  

 

 Young adults of ages between 24-35 are the most affected age group owing to 

their heavy involvement in economic activities that increase the risk of TB 

infections; therefore, programs will have to incorporate economic 

empowerment initiatives in reducing the TB infection as it will aid in 

recognizing the interconnectedness of socioeconomic factors and TB 

infections, and provide an opportunity to create sustainable and 

comprehensive interventions that not only reduce TB infections but also 

contribute to the overall well-being and economic empowerment of affected 

individuals. 
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 TB cases trend is reducing at an annual rate of 1.08% within the region, this 

remains a low target as far as the government’s commitment is concerned. 

Therefore, more stringent measures will have to be employed if the annual rate 

is to reduce further and this can be achieved by adopting a multi-faceted 

approach that combines preventive measures, improved healthcare access, 

addressing social determinants, collaboration, and research. 

 

 It is crucial to enhance data collection at the health facility level by including 

additional variables that provide more detailed information for accurately 

mapping TB hotspots and clusters at the household level. Currently, the lack 

of data on individuals' geo-location, household size, and time of exposure 

creates significant gaps in researchers' ability to better understand the disease 

at the village or community level. 

 

Capturing individuals' geo-location information allows for precise mapping of TB 

cases, enabling researchers to identify specific geographic areas with a high burden of 

the disease. This information can help in targeting interventions, resource allocation, 

and identifying geographical patterns of TB transmission. 

 

Household size data is important as it provides insights into the dynamics of TB 

transmission within households. Understanding the size of households affected by TB 

and the potential for intra-household transmission is crucial for implementing 

appropriate control measures and designing effective interventions. 

 

Time of exposure data is valuable for assessing the duration and intensity of exposure 

to TB. By knowing when individuals were exposed to the disease, researchers can 

better understand the temporal patterns of transmission and identify potential risk 

factors associated with specific time periods. This information is particularly relevant 

for studying seasonal effects and developing targeted interventions. 

 

Collecting such detailed information at the household level may require additional 

efforts and resources. It is essential to invest in training healthcare personnel in data 

collection techniques that capture these variables accurately and consistently. 
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Standardized data collection tools and protocols should be developed to ensure the 

systematic and uniform collection of the required information. 

 

Furthermore, ensuring ethical considerations and data privacy safeguards are in place 

is crucial when collecting individual-level data. Appropriate consent procedures and 

data anonymization techniques should be implemented to protect the privacy and 

confidentiality of individuals. 

 

By incorporating geo-location, household size, and time of exposure into data 

collection at the health facility level, researchers can gain a more comprehensive 

understanding of TB hotspots and clusters at the community level.  

 

6.4 Limitations of study  

Clusters and hotspot trends are more accurately assessed when each infection can be 

traced to an individual with a known residential GPS coordinate. However, due to the 

absence of a registered database of individuals with their residential coordinates in 

Malawi, this study utilized health facilities as a proxy. Collecting individual 

residential coordinates within the scope of the study would have been time-consuming 

and costly, hence the reliance on health facility coordinates. 

 

Additionally, the statistical model employed in this study necessitates the collection of 

study controls, which are crucial for understanding the uninfected population. 

However, the data collected at health facility levels only focused on the number of 

positive cases. 
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APPENDIX 

Appendix 1: TB Cases per District 

Table 2: District Annual TB case notifications 

  Years 

District 
201

3 

201

4 

201

5 

201

6 

201

7 

201

8 

201

9 

202

0 

Gran

d 

Total 

Populatio

n 

Proportio

n (%) 

Chitipa 110 102 113 76 124 181 167 114 987 
155,457 

(0.63%) 

Karonga 191 194 232 204 196 309 286 209 1821 
170,317 

(1.07%) 

Likoma 2 3 4 5 7 6 7 4 38 
14,527 

(0.26%) 

Mzimba 

North 
664 709 579 660 707 591 

116

1 
376 5447 

203,833 

(2.67%) 

Mzimba 

South 
244 237 286 223 199 235 250 216 1890 

395,910 

(0.48%) 

Nkhataba

y 
155 156 178 159 183 148 124 109 1212 

139,083 

-0.87% 

Rumphi 146 123 103 100 151 132 103 71 929 4.13% 

Grand 

Total 

151

2 

152

4 

149

5 

142

7 

156

7 

160

2 

209

8 

109

9 
12324   
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Appendix 2: TB Cases per Health Centers 

Table 3: Health Centre Annual TB case notifications 

Health facility against 

TB Cases  Years 

Health facility  2013 2014 2015 2016 2017 2018 2019 2020 

Grand 

Total 

Atupele Health Center 

     

24 13 15 52 

Bolero Health Centre 12 20 8 8 14 17 11 6 96 

Bulala Health Center 

 

1 6 4 1 10 5 3 30 

Bwengu Health Center 

 

2 4 

 

2 1 11 

 

20 

Chambo Health Center 

     

9 36 1 46 

Chilumba Baracks Health 

Center 

      

4 3 7 

Chilumba Rural Health 

Center 36 28 50 15 37 29 17 22 234 

Chintheche Health 

Center 39 42 36 26 43 29 28 27 270 

Chisala Health Center 

     

2 4 4 10 

Chitimba Health Center 

     

5 5 3 13 

Chitipa District Hospital 103 92 95 76 95 124 85 75 745 

David Gordon Memorial 

Hospital 22 16 25 24 35 15 6 7 150 

Edingeni Health Center 

 

2 3 5 3 9 5 8 35 

Ekwendeni Hospital  82 108 96 143 196 167 126 44 962 

Embangweni Hospital 29 41 44 77 48 21 28 22 310 

Emfeni Health Center 

 

6 1 1 5 5 6 4 28 

Emfeni Health Centre 6 

       

6 

Engucwini Health Center 

     

4 5 3 12 

Enukweni Health Center 

     

2 3 6 11 

Euthini Health Center 10 14 4 5 11 18 18 8 88 

Fulirwa Health Center 

     

5 9 

 

14 

Ifumbo Health Center 

     

1 8 1 10 
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Iponga Health Center  

 

13 11 11 11 27 28 7 108 

Jenda Health Center 

 

8 6 9 7 15 23 13 81 

Kachere Health Center 

 

4 9 15 16 13 12 8 77 

Kafukule Health Center 

 

3 14 5 11 7 8 3 51 

Kameme Health Center 

  

4 

 

7 22 3 4 40 

Kapenda Health center 

 

1 4 

 

6 13 27 7 58 

Kaporo Health Center  30 28 18 28 27 51 14 23 219 

Karonga District Hospital 125 125 153 129 113 144 163 114 1066 

Kaseye Health Center 

       

3 3 

Kasoba Health Center 

     

19 15 4 38 

Katete Health Center 18 14 5 5 2 6 11 3 64 

Katowo Health Centre 

 

2 4 9 7 5 3 2 32 

Liuzu Health Centre 

     

7 1 3 11 

Lunjika Health Center 

   

4 12 6 5 

 

27 

Luwerezi Health Center 

 

4 5 

 

1 3 6 

 

19 

Manyamula Health 

Center 

 

5 2 

 

6 15 7 3 38 

Maula Health Center 

      

2 7 9 

Mbalachanda Health 

Center 

      

5 6 11 

Mhuju Heath Center  5 6 

  

6 8 6 3 34 

Misuku Health Center 

  

2 

 

8 3 3 18 34 

Mpamba Health Center 

      

11 7 18 

Mpherembe Health 

Center 

 

3 11 8 14 9 8 9 62 

Mwazisi Health Center 

      

3 1 4 

mzambazi Health Center 

 

2 5 6 9 5 2 3 32 

Mzenga Health Center 

 

4 3 3 9 

 

6 4 29 

Mzimba District Hospital 197 140 205 107 94 122 129 143 1137 

Mzokoto Health Centre 

 

4 1 3 7 5 5 4 29 

Mzuzu Central Hospital 447 475 340 402 350 269 543 243 3069 

Mzuzu Health Center 42 37 48 39 71 81 409 29 756 
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Nkhatabay District 

Hospital 115 104 122 111 104 87 59 48 750 

Nthalire Health Center 7 9 7 

 

5 7 2 4 41 

Nyungwe Health Center 

   

21 8 10 23 18 80 

Rumphi District Hospital 107 75 65 56 82 77 64 45 571 

St. Annes Health Center 

       

2 2 

St. John’s Hospital 77 81 66 63 63 50 47 39 486 

St. Peters Hospital 2 3 4 5 7 6 7 4 38 

Thunduwike Health 

Center 

     

1 1 

 

2 

Usisya Health Center 1 2 8 4 11 10 1 1 38 

Wenya Health Center 

  

1 

 

3 2 3 1 10 

Wiliro Health Center 

       

1 1 

Grand Total 1512 1524 1495 1427 1567 1602 2098 1099 12324 
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Appendix 3:   Retrospective Space-Time analysis 

                              _____________________________ 

                                        SaTScan v10.0.1 

                                 _____________________________ 

 

Program run on: Thu Jun 23 00:02:38 2022 

 

Retrospective Space-Time analysis scanning for clusters with high rates using the 

Space-Time Permutation model. 

_____________________________________________________________________

__________________________ 

SUMMARY OF DATA 

Study period.......................: 2013/1/1 to 2020/12/31. 

Number of locations................: 59 

Total number of cases..............: 12324 

_____________________________________________________________________

__________________________ 

 

CLUSTERS DETECTED 

 

1.Location IDs included.: Mzuzu Health Center  

  Coordinates / radius.: (11.461114 N, 34.015231 E) / 0 km 

  Time frame............: 2017/1/1 to 2020/12/31 

  Number of cases.......: 590 

  Expected cases........: 390.51. 

  Observed / expected...: 1.51. 

  Test statistic........: 45.659302. 

  P-value...............: < 0.00000000000000001 

 

2.Location IDs included.: Lunjika Health Center, Thunduwike Health Center, 

Mzimba District 

                          Hospital, Bulala Health Center, Manyamula Health Center, Kafukule 

                          Health Center, Euthini Health Center, mzambazi Health Center, 
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                          Embangweni Hospital, Kachere Health Center, Mzuzu Central 

Hospital 

  Coordinates / radius.: (11.764553 N, 33.685669 E) / 48.12 km 

  Time frame............: 2013/1/1 to 2016/12/31 

  Number of cases.......: 2622 

  Expected cases........: 2350.04. 

  Observed / expected...: 1.12. 

  Test statistic........: 18.904776. 

  P-value...............: < 0.00000000000000001 

 

3.Location IDs included.: Chambo Health Center, Kapenda Health center, Kaseye 

Health Center, 

                          Ifumbo Health Center 

  Coordinates / radius.: (4.201064 N, 32.657917 E) / 606.09 km 

  Time frame............: 2017/1/1 to 2020/12/31 

  Number of cases.......: 112 

  Expected cases........: 60.44. 

  Observed / expected...: 1.85. 

  Test statistic........: 17.638308. 

  P-value...............: 0.00000000000000011 

4.Location IDs included.: Iponga Health Center, Atupele Health Center, Kaporo 

Health Center, 

                          Kasoba Health Center, Misuku Health Center, Fulirwa Health Center 

  Coordinates / radius.: (9.646008 N, 33.812400 E) / 35.62 km 

  Time frame............: 2017/1/1 to 2020/12/31 

  Number of cases.......: 324 

  Expected cases........: 240.20. 

  Observed / expected...: 1.35. 

  Test statistic........: 13.456252. 

  P-value...............: 0.00000000000095 

 

5.Location IDs included.: Liuzu Health Centre, Mzenga Health Center, Maula Health 

Center, 

                          Nkhatabay District Hospital, Chisala Health Center, Chintheche  
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                          Health Center, Mpamba Health Center, St. Johns Hospital 

  Coordinates / radius.: (11.608619 N, 34.294894 E) / 33.93 km 

  Time frame............: 2013/1/1 to 2016/12/31 

  Number of cases.......: 892 

  Expected cases........: 765.30. 

  Observed / expected...: 1.17. 

  Test statistic........: 10.650388. 

  P-value...............: 0.00000000063 

 

6.Location IDs included.: Chitimba Health Center 

  Coordinates / radius.: (10.618603 N, 34.174103 E) / 0 km 

  Time frame............: 2017/1/1 to 2020/12/31 

  Number of cases.......: 13 

  Expected cases........: 6.72. 

  

  Test statistic........: 2.304298. 

  P-value...............: 0.134 

 

7.Location IDs included.: David Gordon Memorial Hospital 

  Coordinates / radius.: (10.604525 N, 34.110803 E) / 0 km 

  Time frame............: 2013/1/1 to 2016/12/31 

  Number of cases.......: 87 

  Expected cases........: 72.52. 

  Observed / expected...: 1.20. 

  Test statistic........: 1.367134. 

  P-value...............: 0.726 

 

"A cluster is statistically significant when its test statistic is greater than the critical" 

(―Spatio-temporal modelling of human leptospirosis prevalence using the ...‖) 

value, which is, for significance level: 

 

Gumbel Critical Values: 

... 0.00001: 6.467597 

.... 0.0001: 5.472276 
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Standard Monte Carlo Critical Values: 

..... 0.001: 4.874990 

...... 0.01: 3.523549 

...... 0.05: 2.814744 

 

Note: The coordinates file contains location IDs with identical coordinates that were 

combined 

into one location. In the optional output files, combined locations are represented by a 

single 

location ID as follows: 

----------------------------------------------------------------------------------------------- 

Chilumba Baracks Health Center: St. Annes Health Center 

Emfeni Health Center: Emfeni Health Centre 

Wenya Health Center: Wiliro Health Center 

_____________________________________________________________________

__________________________ 

 

PARAMETER SETTINGS 

 

Input 

----- 

Time Precision: Year 

  Start Time: 2013/1/1. 

  End Time: 2020/12/31. 

  Coordinates File: / Temporal analysis.geo 

  Coordinates: Latitude/Longitude 

 

Analysis 

-------- 

  Type of Analysis: Retrospective Space-Time 

  Probability Model: Space-Time Permutation 

  Scan for Areas with: High Rates 

  Time Aggregation Units: Year 

  Time Aggregation Length: 4 
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Data Checking 

------------- 

  Temporal Data Check: Check to ensure that all cases and controls are within the 

specified temporal study period. 

  Geographical Data Check: Check to ensure that all observations (cases, controls, and 

populations) are within the specified geographical area. 

 

Spatial Neighbors 

----------------- 

  Use Non-Euclidean Neighbors file: No 

  Use Meta Locations File: No 

  Multiple Coordinates Type: Allow only one set of coordinates per location ID. 

 

Locations Network 

----------------- 

  Use Locations Network File: No 

  Locations Network File:  

  Locations Network Purpose: Network Definition 

 

Spatial Window 

-------------- 

  Maximum Spatial Cluster Size: 50 percent of population at risk 

  Window Shape: Circular 

 

Temporal Window 

--------------- 

  Minimum Temporal Cluster Size: 1 Year 

  Maximum Temporal Cluster Size: 50 percent of study period 

 

Cluster Restrictions 

-------------------- 

  Minimum Cases in Cluster for High Rates: 2 

  Restrict High-Rate Clusters: No 
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Space And Time Adjustments 

Adjust for Weekly Trends, Nonparametric: No 

 

Inference 

--------- 

  P-Value Reporting: Default Combination 

  Number of Replications: 999 

  Adjusting for More Likely Clusters: No 

 

Cluster Drilldown 

----------------- 

  Standard Drilldown on Detected Clusters: No 

  Bernoulli Drilldown on Detected Clusters: No 

 

Spatial Output 

-------------- 

  Automatically Launch Map: Yes 

  Compress KML File into KMZ File: No 

  Include All Location IDs in the Clusters: Yes 

  Cluster Location Threshold - Separate KML: 1000 

  Report Hierarchical Clusters: Yes 

  Criteria for Reporting Secondary Clusters: No Geographical Overlap 

  Restrict Reporting to Smaller Clusters: No 

 

Temporal Graphs 

--------------- 

  Produce Temporal Graphs: No 

 

Other Output 

------------ 

  Report Critical Values: Yes 

  Report Monte Carlo Rank: No 

  Print ASCII Column Headers: No 
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Run Options 

----------- 

  Processor Usage: All Available Processors 

  Suppress Warnings: No 

  Logging Analysis: No 

_____________________________________________________________________

__________________________ 

 

Program completed: Thu Jun 23 00:02:49 2022 

Total Running Time: 11 seconds 

Processor Usage: 4 processors 
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Appendix 4: Spatial Variation in Temporal Trends analysis 

_____________________________  SaTScan v10.0.1 

 _____________________________Program run on: Mon Jan 1 03:08:37 2018 

 

Spatial Variation in Temporal Trends analysis scanning for clusters with increasing or 

decreasing rates using the Discrete Poisson model. 

_____________________________________________________________________

__________________________ 

Scanning for clusters with increasing or decreasing rates using the Discrete Poisson 

model. 

SUMMARY OF DATA 

 

Study period.......................: 2013/1/1 to 2020/12/31. 

Number of locations................: 59 

Population, averaged over time....: 109131197. 

Total number of cases..............: 12324 

Annual cases / 100000..............: 1.4 

Time trend.........................: 1.342% annual decrease 

_____________________________________________________________________

__________________________ 

 

CLUSTERS DETECTED 

 

1.Location IDs included.: Mzuzu Health Center 

  Coordinates / radius.: (11.461114 N, 34.015231 E) / 0 km 

  Population............: 5532216 

  Number of cases.......: 756 

  Expected cases........: 645.26. 

  Annual cases / 100000.: 1.7 

  Observed / expected...: 1.17. 

  Relative risk.........: 1.18 

  Inside time trend....: 25.144% annual increase 

  Outside time trend....: 2.697% annual decrease 
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  Log likelihood ratio.: 72.771854 

  P-value...............: 0.001 

 

2.Location IDs included.: Chambo Health Center 

  Coordinates / radius.: (4.201064 N, 32.657917 E) / 0 km 

  Population............: 48339 

  Number of cases.......: 46 

  Expected cases........: 5.58. 

  Annual cases / 100000.: 11.6 

  Observed / expected...: 8.25. 

  Relative risk.........: 8.28 

  Inside time trend....: +infinity 

  Outside time trend....: 1.500% annual decrease 

  Log likelihood ratio.: 56.780150 

  P-value...............: 0.001 

 

3.Location IDs included.: Katowo Health Centre, Mwazisi Health Center, Bolero 

Health Centre, 

                          Rumphi District Hospital, Bwengu Health Center, Mhuju Heath 

Center, 

                          Nthalire Health Center, Enukweni Health Center, Mpherembe Health 

                          Center, Engucwini Health Center, Mzokoto Health Centre, 

Mbalachanda 

                          Health Center, David Gordon Memorial Hospital 

  Coordinates / radius.: (10.812678 N, 33.522375 E) / 68.29 km 

  Population............: 2367646 

  Number of cases.......: 1073 

  Expected cases........: 277.78. 

  Annual cases / 100000.: 5.5 

  Observed / expected...: 3.86. 

  Relative risk.........: 4.14 

  Inside time trend....: 15.277% annual decrease 

  Outside time trend....: 0.982% annual decrease 

  Log likelihood ratio.: 49.032186 
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  P-value...............: 0.001 

 

4.Location IDs included.: Lunjika Health Center, Thunduwike Health Center, 

Mzimba District 

                          Hospital, Bulala Health Center, Manyamula Health Center, Kafukule 

                          Health Center, Euthini Health Center, mzambazi Health Center, 

                          Embangweni Hospital, Kachere Health Center, Mzuzu Central 

Hospital 

  Coordinates / radius.: (11.764553 N, 33.685669 E) / 48.12 km 

  Population............: 50986358 

  Number of cases.......: 4861 

  Expected cases........: 5723.30. 

  Annual cases / 100000.: 1.2 

  Observed / expected...: 0.85. 

  Relative risk.........: 0.75 

  Inside time trend....: 5.238% annual decrease 

  Outside time trend....: 0.948% annual increase 

  Log likelihood ratio.: 23.528749 

  P-value...............: 0.001 

ote: The coordinates file contains location IDs with identical coordinates that were 

combined. 

into one location. In the optional output files, combined locations are represented by a 

single 

location ID as follows: 

----------------------------------------------------------------------------------------------- 

Chilumba Baracks Health Center: St. Annes Health Center 

Emfeni Health Center: Emfeni Health Centre 

Wenya Health Center: Wiliro Health Center 

_____________________________________________________________________

__________________________ 

 

PARAMETER SETTINGS 
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Input 

----- 

  Case File: / Temporal analysis (2). cas 

  Population File: /  

  Time Precision: Year 

  Start Time: 2013/1/1. 

  End Time: 2020/12/31. 

  Coordinates File:  

  Coordinates: Latitude/Longitude 

 

Analysis 

-------- 

  Type of Analysis:  

  Scan for Areas with: Increasing or Decreasing Rates 

  Time Aggregation Units: Year 

  Time Aggregation Length: 4 

 

Data Checking 

------------- 

  Temporal Data Check: Check to ensure that all cases and controls are within the 

specified temporal study period. 

  Geographical Data Check: Check to ensure that all observations (cases, controls, and 

populations) are within the specified geographical area. 

 

Spatial Neighbors 

----------------- 

  Use Non-Euclidean Neighbors file: No 

  Use Meta Locations File: No 

  Multiple Coordinates Type: Allow only one set of coordinates per location ID. 

 

Locations Network 

----------------- 

  Use Locations Network File: No 

  Locations Network File:  
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  Locations Network Purpose: Network Definition 

 

Spatial Window 

-------------- 

  Maximum Spatial Cluster Size: 50 percent of population at risk 

  Window Shape: Circular 

 

Cluster Restrictions 

-------------------- 

  Minimum Cases in Cluster for High Rates: 2 

  Restrict High-Rate Clusters: No 

  Restrict Low-Rate Clusters: No 

 

Space And Time Adjustments 

-------------------------- 

  Temporal Adjustment: None 

  Adjust for Weekly Trends, Nonparametric: No 

  Adjust for known relative risks: No 

 

Inference 

--------- 

  P-Value Reporting: Default Combination 

  Number of Replications: 999 

  Adjusting for More Likely Clusters: No 

 

Cluster Drilldown 

----------------- 

  Standard Drilldown on Detected Clusters: No 

 

Spatial Output 

-------------- 

  Automatically Launch Map: Yes 

  Compress KML File into KMZ File: No 

  Include All Location IDs in the Clusters: Yes 
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  Cluster Location Threshold - Separate KML: 1000 

  Report Hierarchical Clusters: Yes 

  Criteria for Reporting Secondary Clusters: No Geographical Overlap 

  Restrict Reporting to Smaller Clusters: No 

 

Other Output 

------------ 

  Report Critical Values: No 

  Report Monte Carlo Rank: No 

  Print ASCII Column Headers: No 

 

Run Options 

----------- 

  Processor Usage: All Available Processors 

  Suppress Warnings: No 

  Logging Analysis: No 

_____________________________________________________________________

__________________________ 

 

Program completed: Mon Jan 1 03:08:57 2018 

Total Running Time: 20 seconds 

Processor Usage: 4 processors 

 

 


